畫出一個平面直角坐標(biāo)系,在坐標(biāo)平面內(nèi)描出下列各點(diǎn):

A(-1,5),B(-4,2),C(5,2),D(8,5).

(1)將A,B,C,D依次用線連結(jié)成封閉圖形,你會得到一個什么樣的圖形?它是軸對稱圖形嗎?如果是,請你畫出它的對稱軸.

(2)作出點(diǎn)C,D關(guān)于x軸的對稱點(diǎn),,將C,D,,依次用線連結(jié)起來,你又會得到一個什么樣的封閉圖形?它是軸對稱圖形嗎?如果是,請你畫出它的對稱軸.

(3)若把四邊形ABCD沿y軸翻折,寫出各對應(yīng)點(diǎn)的坐標(biāo).

答案:略
解析:

(1)圖略,平行四邊形;它不是軸對稱圖形.

(2)(5,-2)(8,-5).圖略,等腰梯形;它是軸對稱圖形,圖略.

(3)(1,5)(4,2),(5,2),(8,5)


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

代數(shù)式ax2+bx+c(a≠0)當(dāng)x取1和3時,代數(shù)式的值為0.
(1)求b、c分別與a的關(guān)系式;
(2)當(dāng)代數(shù)式的值等于-a和3a時,求x;
(3)用y表示上述代數(shù)式的值,把所得到的任意一對有序?qū)崝?shù)對(x,y)作為直角坐標(biāo)平面內(nèi)的點(diǎn)的坐標(biāo).請?jiān)?3<a<3的范圍內(nèi),對a取一個合適的值,畫出此時點(diǎn)(x,y)所成圖形的示意圖,然后觀察并寫出點(diǎn)(x,y)的位置隨x的增大而變化的規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)平面xOy中,二次函數(shù)y=x2+2(m+2)x+m-2圖象與y軸交于(0,-3)點(diǎn).
(1)求該二次函數(shù)的解析式,并畫出示意圖;
(2)將該二次函數(shù)圖象向左平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

代數(shù)式ax2+bx+c(a≠0)當(dāng)x取1和3時,代數(shù)式的值為0.
(1)求b、c分別與a的關(guān)系式;
(2)當(dāng)代數(shù)式的值等于-a和3a時,求x;
(3)用y表示上述代數(shù)式的值,把所得到的任意一對有序?qū)崝?shù)對(x,y)作為直角坐標(biāo)平面內(nèi)的點(diǎn)的坐標(biāo).請?jiān)?3<a<3的范圍內(nèi),對a取一個合適的值,畫出此時點(diǎn)(x,y)所成圖形的示意圖,然后觀察并寫出點(diǎn)(x,y)的位置隨x的增大而變化的規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•三明)代數(shù)式ax2+bx+c(a≠0)當(dāng)x取1和3時,代數(shù)式的值為0.
(1)求b、c分別與a的關(guān)系式;
(2)當(dāng)代數(shù)式的值等于-a和3a時,求x;
(3)用y表示上述代數(shù)式的值,把所得到的任意一對有序?qū)崝?shù)對(x,y)作為直角坐標(biāo)平面內(nèi)的點(diǎn)的坐標(biāo).請?jiān)?3<a<3的范圍內(nèi),對a取一個合適的值,畫出此時點(diǎn)(x,y)所成圖形的示意圖,然后觀察并寫出點(diǎn)(x,y)的位置隨x的增大而變化的規(guī)律.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年福建省三明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•三明)代數(shù)式ax2+bx+c(a≠0)當(dāng)x取1和3時,代數(shù)式的值為0.
(1)求b、c分別與a的關(guān)系式;
(2)當(dāng)代數(shù)式的值等于-a和3a時,求x;
(3)用y表示上述代數(shù)式的值,把所得到的任意一對有序?qū)崝?shù)對(x,y)作為直角坐標(biāo)平面內(nèi)的點(diǎn)的坐標(biāo).請?jiān)?3<a<3的范圍內(nèi),對a取一個合適的值,畫出此時點(diǎn)(x,y)所成圖形的示意圖,然后觀察并寫出點(diǎn)(x,y)的位置隨x的增大而變化的規(guī)律.

查看答案和解析>>

同步練習(xí)冊答案