【題目】已知關于x的一元二次方程x2+2x+ =0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關于x的二次函數(shù)y=x2+2x+ 的圖象向下平移9個單位,求平移后的圖象的表達式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點A,B(點A在點B左側),直線y=kx+b(k>0)過點B,且與拋物線的另一個交點為C,直線BC上方的拋物線與線段BC組成新的圖象,當此新圖象的最小值大于﹣5時,求k的取值范圍.
【答案】
(1)
解:∵關于x的一元二次方程x2+2x+ =0有實數(shù)根,
∴△=b2﹣4ac=4﹣4× ≥0,
∴k﹣1≤2,
∴k≤3,
∵k為正整數(shù),
∴k的值是1,2,3;
(2)
解:∵方程有兩個非零的整數(shù)根,
當k=1時,x2+2x=0,不合題意,舍去,
當k=2時,x2+2x+ =0,
方程的根不是整數(shù),不合題意,舍去,
當k=3時,x2+2x+1=0,
解得:x1=x2=﹣1,符合題意,
∴k=3,
∴y=x2+2x+1,
∴平移后的圖象的表達式y(tǒng)=x2+2x+1﹣9=x2+2x﹣8;
(3)
解:令y=0,x2+2x﹣8=0,
∴x1=﹣4,x2=2,
∵與x軸交于點A,B(點A在點B左側),
∴A(﹣4,0),B(2,0),
∵直線l:y=kx+b(k>0)經(jīng)過點B,
∴函數(shù)新圖象如圖所示,當點C在拋物線對稱軸左側時,新函數(shù)的最小值有可能大于﹣5,
令y=﹣5,即x2+2x﹣8=﹣5,
解得:x1=﹣3,x2=1,(不合題意,舍去),
∴拋物線經(jīng)過點(﹣3,﹣5),
當直線y=kx+b(k>0)經(jīng)過點(﹣3,﹣5),(2,0)時,
可求得k=1,
由圖象可知,當0<k<1時新函數(shù)的最小值大于﹣5.
【解析】(1)根據(jù)方程有實數(shù)根可得△≥0,求出k的取值范圍,然后根據(jù)k為正整數(shù)得出k的值;(2)根據(jù)方程有兩個非零的整數(shù)根進行判斷,得出k=3,然后得出函數(shù)解析式,最后根據(jù)平移的性質(zhì)求出平移后的圖象的表達式;(3)令y=0,得出A、B的坐標,作出圖象,然后根據(jù)新函數(shù)的最小值大于﹣5,求出C的坐標,然后根據(jù)B、C的坐標求出此時k的值,即可得出k的取值范圍.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣2(k+1)x+k2=0有兩個實數(shù)根x1、x2 .
(1)求k的取值范圍;
(2)若x1+x2=3x1x2﹣6,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( )
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的箱子里,裝有黃、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別.
(1)隨機從箱子里取出1個球,則取出黃球的概率是多少?
(2)隨機從箱子里取出1個球,放回攪勻再取第二個球,請你用畫樹狀圖或列表的方法表示出所有可能出現(xiàn)的結果,并求兩次取出的都是白色球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,O為坐標原點.直線y=kx+b與拋物線y=mx2﹣ x+n同時經(jīng)過A(0,3)、B(4,0).
(1)求m,n的值.
(2)點M是二次函數(shù)圖象上一點,(點M在AB下方),過M作MN⊥x軸,與AB交于點N,與x軸交于點Q.求MN的最大值.
(3)在(2)的條件下,是否存在點N,使△AOB和△NOQ相似?若存在,求出N點坐標,不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖:
以A為圓心,1為半徑向右畫弧交OC于點A1,得第1條線段AA1;再以A1為圓心,1為半徑向右畫弧交OB于點A2,得第2條線段A1A2;再以A2為圓心,1為半徑向右畫弧交OC于點A3,得第3條線段A2A3;…這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為x=1,下列結論:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣ ),( )是拋物線上兩點,則y1<y2其中結論正確的是( )
A.①②
B.②③
C.②④
D.①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A市到B市的路程為260千米,甲車從A市前往B市運送物資,行駛2小時在M地汽車出現(xiàn)故障,立即通知技術人員乘乙車從A市趕來維修(通知時間忽略不計),乙車到達M地后又經(jīng)過20分鐘修好甲車后以原速原路返回A市,同時甲車以原來1.5倍的速度前往B市,如圖是兩車距A市的路程y(千米)與甲車所用時間x(小時)之間的函數(shù)圖象,下列四種說法:
①甲車提速后的速度是60千米/時;
②乙車的速度是96千米/時;
③乙車返回時y與x的函數(shù)關系式為y=﹣96x+384;
④甲車到達B市乙車已返回A市2小時10分鐘.
其中正確的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com