如圖,AB=AD,AC平分∠BAD,E在AC上,那么,圖中共有      對(duì)全等三角形
3
解:∵AB=AD,AC平分∠BAD,
∴∠DAC=∠CAB,
∵AD=AB,AC=AC,
∴△ADC≌△ABC.(SAS)
進(jìn)一步可得△ADE≌△ABE,△DEC≌△BCE共3對(duì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖一,在Rt△ABC中,∠ACB=90°,∠A=30°,P為BC邊上任意一點(diǎn),點(diǎn)Q為AC邊動(dòng)點(diǎn),分別以Cm、MQ為邊做等邊△MPF和等邊△PQE,連接EF.
(一)試探索EF與AB位置關(guān)系,并證明;
(5)如圖5,當(dāng)點(diǎn)P為BC延長(zhǎng)線上任意一點(diǎn)時(shí),(一)結(jié)論是否成立?請(qǐng)說(shuō)明理由.
(3)如圖3,在Rt△ABC中,∠ACB=90°,∠A=m°,P為BC延長(zhǎng)線上一點(diǎn),點(diǎn)Q為AC邊動(dòng)點(diǎn),分別以CP、PQ為腰做等腰△PCF和等腰△PQE,使得PC=PF,PQ=PE,連接EF.要使(一)的結(jié)論依然成立,則需要添加怎樣的條件?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

問(wèn)題情境:如圖①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,可知:∠BAD=∠C(不需要證明);
特例探究:如圖②,∠MAN=90°,射線AE在這個(gè)角的內(nèi)部,點(diǎn)B、C在∠MAN的邊AM、AN上,且AB="AC," CF⊥AE于點(diǎn)F,BD⊥AE于點(diǎn)D.證明:△ABD≌△CAF;
歸納證明:如圖③,點(diǎn)BC在∠MAN的邊AM、AN上,點(diǎn)EF在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB="AC," ∠1=∠2=∠BAC.求證:△ABE≌△CAF;
拓展應(yīng)用:如圖④,在△ABC中,AB=AC,AB>BC.點(diǎn)D在邊BC上,CD=2BD,點(diǎn)E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,則△ACF與△BDE的面積之和為            .(12分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知△ABC,CP,BP分別平分△ABC的外角∠ECB、∠DBC,若∠A=50o,那么∠P=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示的△ABC周長(zhǎng)為30厘米,把△ABC的邊AC對(duì)折,使頂點(diǎn)C和頂點(diǎn)A重合,折痕交BC于點(diǎn)D,交AC邊于點(diǎn)E,連接AD,若AE=4厘米,則△ABD的周長(zhǎng)是(   )厘米
A.22B.20C.18D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,

(1)△BCE≌△CAD的依據(jù)是                   (填字母);
(2)猜想:AD、DE、BE的數(shù)量關(guān)系為                  (不需證明);
(3)當(dāng)BE繞點(diǎn)B、AD繞點(diǎn)A旋轉(zhuǎn)到圖2位置時(shí),線段AD、DE、BE之間又有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在△ABC中,AB=AC=20cm,DE垂直平分AB,垂足為E,AC于D,若△DBC的周長(zhǎng)為35cm,則BC的長(zhǎng)為(   )
A.5cmB.10cmC.15cmD.17.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

三個(gè)半圓的面積分別為S1=4.5π,S2=8π,S3=12.5π,把三個(gè)半圓拼成如圖所示的圖形,則△ABC一定是直角三角形嗎?說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果的三邊長(zhǎng)a、b、c滿足關(guān)系式,則的形狀是      。

查看答案和解析>>

同步練習(xí)冊(cè)答案