設(shè)a=-1,b=,c=2-,下列說(shuō)法中 錯(cuò)誤的是

[  ]

A.a(chǎn)>b>c>0
B.>1
C.
D.<1
答案:D
解析:

選D.

∵a≈0.414,b≈0.318,c≈0.268.

=1.92>1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:標(biāo)準(zhǔn)大考卷·初中數(shù)學(xué)AB卷 九年級(jí)(上冊(cè)) (課標(biāo)華東師大版) (第3版) 課標(biāo)華東師大版 第3版 題型:059

(1)填空:

①方程x2+2x+1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________;

②方程x2-3x-1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________;

③方程3x2+4x-7=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________;

④方程x2+x+1=0的實(shí)數(shù)根存在嗎?答:________.

(2)猜想并驗(yàn)證:

由①、②、③、④,對(duì)于一元二次方程ax2+bx+c=0,你能得出什么結(jié)論?試說(shuō)明這個(gè)結(jié)論的正確性.

(3)應(yīng)用結(jié)論解決問(wèn)題:

已知關(guān)于x的方程x2-2(m-2)x+m2=0,若設(shè)它的兩根為x1、x2,且=56,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江蘇省泰州市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044

如圖,矩形ABCD中,點(diǎn)P在邊CD上,且與點(diǎn)C、D不重合,過(guò)點(diǎn)A作AP的垂線與CB的延長(zhǎng)線相交于點(diǎn)Q,連接PQ,PQ的中點(diǎn)為M.

(1)求證:△ADP∽△ABQ;

(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)DP=x,BM 2y,求y與x的函數(shù)關(guān)系式,并求線段BM長(zhǎng)的最小值;

(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化,當(dāng)點(diǎn)M落在矩形ABCD外部時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(9分)如圖,在半徑為r的半圓⊙O中,半徑OA⊥直徑BC,點(diǎn)E、F分別在弦AB、AC上滑動(dòng)并保持AE=CF,但點(diǎn)F不與A、C重合,點(diǎn)E不與A、B重合.

1.(1)求證  S四邊形AEOF

2.(2)設(shè)AE=x,S△OEF=y(tǒng),寫(xiě)出y與x之間的函數(shù)關(guān)系式及自變量x的范圍;

3.(3)當(dāng)S△OEF =S△ABC時(shí),求點(diǎn)E、F分別在AB、AC上的位置及EF的長(zhǎng)。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年南京市溧水縣中考數(shù)學(xué)一模試卷 題型:解答題

【改編】(本小題滿(mǎn)分8分)
“6”字形圖中,F(xiàn)M是大⊙O的直徑,BC與大⊙O相切于B,OB與小⊙O相交于點(diǎn)A,AD∥BC,CD∥BH∥FM,DH⊥BH于H,設(shè)∠FOB=α,OB=4,BC=6.
(1)求證:AD為小⊙O的切線;

 

 
(2)在圖中找出一個(gè)可用α表示的角,并說(shuō)明你這樣表示的理由;(根據(jù)所寫(xiě)結(jié)果的正確性及所需推理過(guò)程的難易程度得分略有差異)

(3)當(dāng)α=30º時(shí),求DH的長(zhǎng)。(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平行四邊形ABCD中,AB=5,BC=10,FAD的中點(diǎn),CEABE,設(shè)∠ABCα(60°≤α<90°).

(1)當(dāng)α=60°時(shí),求CE的長(zhǎng);

(2)當(dāng)60°<α<90°時(shí),

①是否存在正整數(shù)k,使得∠EFDkAEF?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.

②連接CF,當(dāng)CE2CF2取最大值時(shí),求tan∠DCF的值.

分析 (1)利用60°角的正弦值列式計(jì)算即可得解;

(2)①連接CF并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得CFGF,AGCD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EFGF,再根據(jù)ABBC的長(zhǎng)度可得AGAF,然后利用等邊對(duì)等角的性質(zhì)可得∠AEF=∠G=∠AFG根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;

②設(shè)BEx,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長(zhǎng)度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問(wèn)題解答.

查看答案和解析>>

同步練習(xí)冊(cè)答案