【題目】如圖,△ABC中,∠C=90°,CA=CB,D為AC上的一點,AD=2CD,AE⊥AB交BD的延長線于E,則 =

【答案】
【解析】解:如圖,過D作DF⊥AB于G,DG∥BC交AB于G.
∵DG∥BC,AD=2CD,
= =2,∠DGA=∠CBA,
∴AG=2GB.
∵△ABC中,∠C=90°,CA=CB,
∴∠CAB=∠CBA,
∴∠CAB=∠DGA.
在△AFD與△GFD中,
,
∴△AFD≌△GFD,
∴AF=GF,
∴AF=GF=GB,
=
∵DF∥AE,
= =
所以答案是
【考點精析】掌握等腰直角三角形和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC上的點,且滿足AC=DC=DE=BE=1,則tanA=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】山地自行車越來越受到中學(xué)生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(列方程解答)
(2)該車行計劃今年新進一批A型車和B型車共60輛,A型車的進貨價為每輛1100元,銷售價與(1)相同;B型車的進貨價為每輛1400元,銷售價為每輛2000元,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應(yīng)如何進貨才能使這批車獲利最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)題意解答
(1)【閱讀發(fā)現(xiàn)】如圖①,在正方形ABCD的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點M,則圖中△ADE≌△DFC,可知ED=FC,求得∠DMC=
(2)【拓展應(yīng)用】如圖②,在矩形ABCD(AB>BC)的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點M.
(i)求證:ED=FC.
(ii)若∠ADE=20°,求∠DMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班學(xué)生分兩組參加某項活動,甲組有26人,乙組有32人,后來由于活動需要,從甲組抽調(diào)了部分學(xué)生去乙組,結(jié)果乙組的人數(shù)是甲組人數(shù)的2倍還多1人.從甲組抽調(diào)了多少學(xué)生去乙組?

【答案】7個人

【解析】

試題設(shè)從甲組抽調(diào)了個學(xué)生去乙組,根據(jù)抽調(diào)后乙組的人數(shù)是甲組人數(shù)的2倍還多1人即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論.

試題解析:設(shè)從甲組抽出人到乙組,



答:從甲組抽調(diào)了7名學(xué)生去乙組

型】解答
結(jié)束】
26

【題目】如圖,直線ABCD交于點O,OEAB,垂足為點O,OP平分∠EOD,AOD=144°.

(1)求∠AOC與∠COE的度數(shù);

(2)求∠BOP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標分別為﹣1,3,則下列結(jié)論正確的個數(shù)有( ) ①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠MON=45°,OA1=1,作正方形A1B1C1A2 , 面積記作S1;再作第二個正方形A2B2C2A3 , 面積記作S2;繼續(xù)作第三個正方形A3B3C3A4 , 面積記作S3;點A1、A2、A3、A4…在射線ON上,點B1、B2、B3、B4…在射線OM上,…依此類推,則第6個正方形的面積S6是(
A.256
B.900
C.1024
D.4096

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,∠CAB=90°,AB=AC.

(1)如圖1,P,QBC邊上兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點P,QBC邊上兩動點(不與B,C重合),點P在點Q左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.

依題意將圖2補全;

小明通過觀察和實驗,提出猜想:在點P,Q運動的過程中,始終有PM=PA.他把這個猜想與同學(xué)們進行交流,通過討論,形成以下證明猜想的思路:

(Ⅰ)要想證明PM=PA,只需證△APM為等腰直角三角形;

(Ⅱ)要想證明△APM為等腰直角三角形,只需證∠PAM=90°,PA=AM;

請參考上面的思路,幫助小明證明PM=PA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某面粉加工廠加工的面粉,用每袋可裝10g面粉的袋子裝了200袋經(jīng)過稱重,質(zhì)量超過標準質(zhì)量10kg的用正數(shù)表示,質(zhì)量低于標準質(zhì)量10kg的用負數(shù)表示,結(jié)果記錄如下

與標準質(zhì)量的偏差(kg)

1.5

1

0.5

0

0.5

1

2

袋數(shù)()

40

30

10

25

40

20

35

(1)求這批面粉的總質(zhì)量;

(2)如果100kg小麥加工80kg面粉,那么這批面粉是由多少千克小麥加工的?

查看答案和解析>>

同步練習(xí)冊答案