分析 先連接OD、OE,根據(jù)⊙O與△ABC中AB、AC的延長(zhǎng)線及BC邊相切,得出AF=AD,BE=BF,CE=CD,再根據(jù)OD⊥AD,OE⊥BC,∠ACB=90°,得出四邊形ODCE是正方形,最后設(shè)OD=r,列出5+3-r=4+r,求出r=2即可.
解答 解:如圖設(shè)切點(diǎn)分別為E、F、D,連接OD、OE,
∵⊙O與△ABC中AB、AC的延長(zhǎng)線及BC邊相切,
∴AF=AD,BE=BF,CE=CD,
OD⊥AD,OE⊥BC,
∵∠ACB=90°,
∴四邊形ODCE是正方形,
設(shè)OD=r,則CD=CE=r,
∵BC=3,
∴BE=BF=3-r,
∵AB=5,AC=4,
∴AF=AB+BF=5+3-r,
AD=AC+CD=4+r,
∴5+3-r=4+r,
r=2,
則⊙O的半徑是2.
故答案為:2.
點(diǎn)評(píng) 此題考查了切線長(zhǎng)定理、正方形的性質(zhì)、圓的性質(zhì)等,解題的關(guān)鍵是設(shè)出圓的半徑,列出關(guān)于圓的半徑的方程,用方程的思想解決問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5x2+2=0 | B. | 4x2-2x+1=0 | C. | (x-2)2=4 | D. | 3x2+4=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3a2+4a=7a3 | B. | 5a3-6a3=-a | C. | a2+3a2=4a2 | D. | 7a-3a=4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com