B
分析:由△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,易證得△ACE≌△ADB,即可得①正確;又由四邊形ABCD是平行四邊形,易證得△EAC≌△EAD,即可得△ACE≌△ADB≌△ADE,即可判定③④正確;由平行四邊形的中心對稱性,可得②錯誤,又由S
△ACE=S
△ADB=
AD×BH=
AD•AC=
AC
2,S
△ABE=
AE•AB=
AB
2,AB>AC,即可判定②錯誤.繼而求得答案.
解答:①∵△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,
∴AE=AB,AC=AD,∠EAC=∠BAD,
在△ACE和△ADB中,
∵
,
∴△ACE≌△ADB(SAS),
∴△ACE以點A為旋轉(zhuǎn)中心,逆時針方向旋轉(zhuǎn)90°(旋轉(zhuǎn)角為∠EAB=90°)后與△ADB重合;
故①正確;
②∵平行四邊形是中心對稱圖形,
∴要想使△ACB和△DAC重合,△ACB應(yīng)該以對角線的交點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)180°,即可與△DAC重合,
故②錯誤;
③∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠BAC=∠ACD=45°,
∴∠EAC=∠BAC+∠CAD=135°,
∴∠EAD=360°-∠EAC-∠CAD=135°,
∴∠EAC=∠EAD,
在△EAC和△EAD中,
∵
,
∴△EAC≌△EAD(SAS),
∴沿AE所在直線折疊后,△ACE與△ADE重合;
故③正確;
④∵由①③,可得△ADB≌△ADE,
∴沿AD所在直線折疊后,△ADB與△ADE重合,
故④正確;
⑤過B作BH⊥AD,交DA的延長線于H,
∵四邊形ABCD是平行四邊形,
∴BH=AC,
∵△ACE≌△ADB,
∴S
△ACE=S
△ADB=
AD×BH=
AD•AC=
AC
2,
∵S
△ABE=
AE•AB=
AB
2,AB>AC,
∴S
△ABE>S
△ACE;
故⑤錯誤.
故選B.
點評:此題考查了等腰直角三角形的性質(zhì)、全等三角形的判定與性質(zhì)、平行四邊形的性質(zhì)、折疊的性質(zhì)以及旋轉(zhuǎn)的性質(zhì).此題綜合性較強,難度較大,注意數(shù)形結(jié)合思想的應(yīng)用,注意證得△ACE≌△ADB≌△ADE是解此題的關(guān)鍵.