分析 (1)通過解直角三角形即可得到結(jié)果;
(2)過點(diǎn)B作BD⊥AO交AO的延長線于D,通過解直角三角形求得BD的長,由C、O′、B′三點(diǎn)共線可得結(jié)果,計(jì)算O′B′+O′C-BD即可求解.
解答 解:(1)∵O′C⊥OA于C,OA=OB=24cm,
∴sin∠CAO′=$\frac{O'C}{O'A}=\frac{O'C}{OA}=\frac{1}{2}$,
∴∠CAO′=30°.
(2)過點(diǎn)B作BD⊥AO交AO的延長線于D.
∵sin∠BOD=$\frac{BD}{OB}$,
∴BD=OB•sin∠BOD,
∵∠AOB=120°,
∴∠BOD=60°,
∴BD=OB•sin∠BOD=24×$\frac{{\sqrt{3}}}{2}=12\sqrt{3}$.
∵O′C⊥OA,∠CAO′=30°,
∴∠AO′C=60°.
∵∠AO′B′=120°,
∴∠AO′B′+∠AO′C=180°.
∴O′B′+O′C-BD=24+12-$12\sqrt{3}$=36-$12\sqrt{3}$.
∴顯示屏的頂部B′比原來升高了(36-$12\sqrt{3}$)cm.
點(diǎn)評(píng) 本題考查了解直角三角形的應(yīng)用,旋轉(zhuǎn)的性質(zhì),正確的畫出圖形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
初二 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
初三 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com