△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1
(2)畫出將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到的△A2B2C2
(3)求∠CC2C1的度數(shù).

【答案】分析:根據(jù)定義,通過作圖解決問題,作出△CC2C1,根據(jù)三角形的邊長即可確定三角形的形狀,即可作出判斷.
解答:解:(1)、(2)如圖,正確畫出答案(4分).

(3)由圖可知,∵△CC2C1為等腰直角三角形,
∴∠CC2C1=45°(2分).

點(diǎn)評:根據(jù)軸對稱,中心對稱的定義,畫出符合條件的圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、格點(diǎn)△ABC在如圖所示的平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(1,1).
(1)畫出△ABC向左平移3的單位長度的圖形△A1B1C1,再以原點(diǎn)O為位似中心,將△A1B1C1放大到兩倍(即新圖與原圖的相似比為2),在所給的方格圖中畫出所得的圖形△A2B2C2
(2)點(diǎn)A1的坐標(biāo)為
(-1,3)
,在△A1B1C1內(nèi)有一點(diǎn)M(a,b),則點(diǎn)M在△A2B2C2中的對應(yīng)點(diǎn)N的坐標(biāo)為
(2a,2b)或(-2a,-2b)
.(橫縱坐標(biāo)可用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)△ABC在如圖所示的平面直角坐標(biāo)系中,將△ABC向右平移1個(gè)單位長度,再向下平移3個(gè)單位長度,得到△A1B1C1,再畫出△A1B1C1關(guān)于y軸對稱的圖形△A2B2C2,則四邊形A1A2B2B1的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、△ABC在如圖所示的平面直角坐標(biāo)系中.
(1)畫出△ABC繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到的△A1BC1
(2)畫出△ABC關(guān)于原點(diǎn)成對稱的△A2B1C2
(3)寫出A2、B1、C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC在如圖所示的平面直角坐標(biāo)系中,C(5,2).
(1)將△ABC向左平移5個(gè)單位后得到對應(yīng)的△A1B1C1,請畫出△A1B1C1,并寫出C1的坐標(biāo);
(2)以原點(diǎn)O為對稱中心,畫出與△A1B1C1關(guān)于原點(diǎn)O對稱的△A2B2C2,并寫出點(diǎn)C1的對應(yīng)點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•高淳縣一模)△ABC在如圖所示的平面直角坐標(biāo)系中,將△ABC向右平移3個(gè)單位長度后得△A1B1C1,再將△A1B1C1繞點(diǎn)O旋轉(zhuǎn)180°后得到△A2B2C2,則∠AC2O=
45
45
°.

查看答案和解析>>

同步練習(xí)冊答案