=3-a成立,則a的取值范圍是        

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012屆湖北?抵锌寄M數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖l,已知正方形ABCD的對角線AC、BD相交于點O,E是AC上一點,連結(jié)EB,過點A作AMBE,垂足為M,AM交BD于點F
【小題1】求證:OE=OF
【小題2】如圖2,若點E在AC的延長線上,AMBE于點M,交DB的延長線于點F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅武威第五中學(xué)九年級上學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

 = ·成立,則x的取值范圍是____________

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇武進區(qū)九年級上第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

=3-a成立,則a的取值范圍是        

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東泰安卷)數(shù)學(xué)解析版 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點BC)上任意一點,PBC延長線上一點,N是∠ACP的平分線上一點.若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請你將證明過程補充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點,則當∠A1M1N1=90°時,結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請你猜想:當∠AnMnNn    °時,結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

同步練習(xí)冊答案