(1)問題:你能比較的大小嗎?為了解決這個(gè)問題,首先寫出它的一般形式,即比較的大。是正整數(shù)),然后我們從分析,,…這些簡單情況入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.

通過計(jì)算,比較下列各組數(shù)的大。ㄔ跈M線上填寫“>”、“<”、“=”號):

,,,…

(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出的大小關(guān)系是什么?

(3)根據(jù)上面的歸納猜想,嘗試比較的大小.

 

【答案】

(1)<,<,>,>,>;(2)當(dāng)時(shí),,當(dāng)≥3時(shí),;(3).

【解析】

試題分析:仔細(xì)分析所給各組數(shù)的大小即可得到規(guī)律,再應(yīng)用這個(gè)規(guī)律解題即可.

(1),,;

(2)當(dāng)時(shí),,當(dāng)≥3時(shí),;

(3).

考點(diǎn):找規(guī)律-數(shù)字的

變化

點(diǎn)評:解答找規(guī)律的題目要求學(xué)生通過觀察,分析、歸納發(fā)現(xiàn)其中的規(guī)律,并應(yīng)用發(fā)現(xiàn)的規(guī)律解決問題.解決本題的難點(diǎn)在于找到“<”、“>”的臨界點(diǎn).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、問題:你能比較兩個(gè)數(shù)20022003與20032002的大小嗎?為了解決這個(gè)問題,我們先把它抽象成這樣的問題:寫成它的一般形式,即比較nn+1和(n+1)n的大。╪是自然數(shù)).然后,我們分析n=1,n=2,n=3…這些簡單情形入手,從而發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,才想出結(jié)論.
(1)通過計(jì)算,比較下列各組中兩個(gè)數(shù)的大。ㄔ诳崭裰刑睢埃肌薄埃尽薄=”)
①12<21②23<32③34>43④45>54
⑤56>65⑥66>75
(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1和(n+1)n的大小關(guān)系;
(3)根據(jù)上面歸納猜想得到的一般結(jié)論,試比較下列兩個(gè)數(shù)的大。20022003>20032002

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、問題:你能比較20052006和20062005的大小嗎?
為了解決這個(gè)問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1和(n+1)n的大。╪為正整數(shù)),我們從n=1,n=2,n=3…這些簡單的情況入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜出結(jié)論.
(1)通過計(jì)算,比較下列各組數(shù)字大小
①12
21  ②23
32 ③34
43
④45
54     ⑤56
65      ⑥67
76

(2)根據(jù)上面的歸納猜想得到的結(jié)論,試比較下列兩個(gè)數(shù)的大小  20052006
20062005(填”>”,”<”,“=”)
(3)把第(1)題的結(jié)果經(jīng)過歸納,你能得出什么結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(一)問題:你能比較兩個(gè)數(shù)20092010和20102009的大小嗎?
為了解決這個(gè)問題,我們先把它抽象成數(shù)學(xué)問題,寫出他的一般形式,即比較nn+1和(n+1)n的大小(n為自然數(shù)),然后我們分析這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計(jì)算,比較下列各組數(shù)的大小:
①12
 
21;②23
 
32;③34
 
43;④45
 
54;⑤56
 
65
(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1
 
(n+1)n(n≥3)
(3)根據(jù)上面歸納猜想得到的一般結(jié)論,試比較下列兩個(gè)數(shù)的大。
①20092010
 
20102009;②-20092010
 
-20102009
(二)請比較大小:
231981+1
231982+1
 
231982+1
231983+1
,并寫出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較兩個(gè)數(shù)20122013和20132012的大小嗎?為了解決這個(gè)問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1和(n+1)n的大小(n是自然數(shù)),然后我們從分析n=1,n=2,n=3,…這些簡
單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論.
(1)通過計(jì)算,比較下列各組中兩個(gè)數(shù)的大。
①12
21
②23
32
③34
43
④45
54
⑤56
65 
⑥67
76

(2)從第(1)題的結(jié)果經(jīng)過歸納,可以猜想出nn+1和(n+1)n(n≥3)的大小關(guān)系式是
nn+1>(n+1)n
nn+1>(n+1)n

(3)根據(jù)上面歸納猜想得到的一般結(jié)論,試比較兩個(gè)數(shù)的大。20122013
20132012(填”>”,”<”,“=”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:你能比較兩個(gè)數(shù)20102011和20112010的大小嗎?為了解決問題,我們先把它抽象成數(shù)學(xué)問題,寫出它的一般形式,即比較nn+1和(n+1)n的大。╪是正整數(shù)),然后,從分析n=1,n=2,n=3,…這些簡單情形入手,從中發(fā)現(xiàn)規(guī)律,經(jīng)過歸納,猜想出結(jié)論:已通過計(jì)算,比較下列各組數(shù)中兩個(gè)數(shù)的大。ㄌ睿荆,=)
①12
21;②23
32;③34
43;④45
54;⑤56
65
(1)從上面的結(jié)果經(jīng)過歸納,可以猜想出nn+1和(n+1)n的大小關(guān)系是
當(dāng)n<3時(shí),nn+1<(n+1)n,當(dāng)n>3時(shí),nn+1>(n+1)n
當(dāng)n<3時(shí),nn+1<(n+1)n,當(dāng)n>3時(shí),nn+1>(n+1)n

(2)根據(jù)上面的歸納猜想得到的一般結(jié)論,試比較下列兩個(gè)數(shù)的大小:20102011
20112010

查看答案和解析>>

同步練習(xí)冊答案