【題目】如圖,在RtABC中,∠ACB90°,AC5,BC12,DAB上一動(dòng)點(diǎn),過點(diǎn)DDEAC于點(diǎn)E,DFBC于點(diǎn)F,連接EF,則線段EF的最小值是___

【答案】.

【解析】

連接CD,利用勾股定理列式求出AB,判斷出四邊形CFDE是矩形,根據(jù)矩形的對(duì)角線相等可得EF=CD,再根據(jù)垂線段最短可得CDAB時(shí),線段EF的值最小,然后根據(jù)三角形的面積公式列出求解即可.

解:如圖,連接CD

∵∠ACB90°AC5,BC12,

AB13,

DEAC,DFBC,∠C90°,

∴四邊形CFDE是矩形,

EFCD,

由垂線段最短可得CDAB時(shí),線段EF的值最小,

此時(shí),SABCBCACABCD

×12×5×13CD,

解得:CD,

EF

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,BC4,將矩形沿AC折疊,點(diǎn)D落在點(diǎn)D′處,則重疊部分△AFC的面積為(

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,CA=CB,CDAB,CDOA的延長(zhǎng)線交于點(diǎn)D.

(1)求證:CD 是⊙O 的切線;

(2)若∠ACB=120°,OA=2,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,O是矩形ABCD的對(duì)角線的交點(diǎn),作DE//AC,CE//BDDE、CE相交于點(diǎn)E

求證:(1)四邊形OCED是菱形.

2)連接OE,若AD=5,CD=3,求菱形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點(diǎn) A(1,0)x軸的垂線交反比例函數(shù) y= (x大于零)的圖象交于點(diǎn)M,已知三角形AOM的面積為3.

(1)k的值;

(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0), 若以AB為一邊的正方形ABCD有頂點(diǎn)在該反比例函數(shù)的圖像上,t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的頂點(diǎn)為B(1,3),與軸的交點(diǎn)A在點(diǎn) (2,0)和(3,0)之間.以下結(jié)論:

;;;⑤若,且,

.其中正確的結(jié)論有

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:

1)如圖1,求證:

2)如圖2,點(diǎn)上,且滿足平分,若,,求的度數(shù)(用表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】利用圖象法求方程的解,體現(xiàn)了數(shù)形結(jié)合的方法,它是將方程的解看成兩個(gè)函數(shù)圖象交點(diǎn)的橫坐標(biāo).若關(guān)于x的方程x2+a﹣=0(a0)只有一個(gè)整數(shù)解,則a的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC沿邊AB方向平移到BDE的位置,則圖中∠CBE=_____,連接CE后,線段CEAD的關(guān)系是______,BEC____三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案