(2006•臨沂)如圖,順次連接圓內(nèi)接矩形各邊的中點,得到菱形ABCD,若BD=10,DF=4,則菱形ABCD的邊長為( )

A.
B.
C.6
D.9
【答案】分析:易得OD長,那么可得到圓的半徑為OD+DF,利用三角形全等可得菱形邊長等于圓的半徑.
解答:解:如圖:連接OG,
∵BD=10,DF=4
∴⊙O的半徑r=OD+DF=BD+DF=×10+4=9
∴OG=9
在Rt△GOD與Rt△ADO中,OD=OD,AO=GD,∠AOD=∠GDO=90°
∴△AOD≌△GDO
∴OG=AD=9,故選D.
點評:本題考查的是圓內(nèi)接矩形的性質(zhì),及菱形的性質(zhì),屬中學階段的常規(guī)題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年廣東省梅州市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省巢湖市第七中學中考數(shù)學復(fù)習模擬試卷(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省江陵縣中考數(shù)學模擬訓(xùn)練卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省深圳市中考數(shù)學全真模擬試卷(二)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案