【題目】(本題滿分6分)如圖所示的方格地面上,標(biāo)有編號(hào)1、2、3的3
個(gè)小方格地面是空地,另外6個(gè)小方格地面是草坪,除此以外小方格地
面完全相同.
(1)一只自由飛行的小鳥(niǎo),將隨意地落在圖中所示的方格地面上,求
小鳥(niǎo)落在草坪上的概率;
(2)現(xiàn)準(zhǔn)備從圖中所示的3個(gè)小方格空地中任意選取2個(gè)種植草坪,
則編號(hào)為1、2的2個(gè)小方格空地種植草坪的概率是多少(用樹(shù)狀圖或列表法求解)?
【答案】解: (1) 小鳥(niǎo)落在草坪上的概率為。
(2)用樹(shù)狀圖列出所有可能的結(jié)果:
開(kāi)始
1 2 3
2 3 1 3 1 2
所以編號(hào)為1、2的2個(gè)小方格空地種植草坪的概率是。
【解析】
試題根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.使用樹(shù)狀圖分析時(shí),一定要做到不重不漏.
試題解析:(1)P(小鳥(niǎo)落在草坪上)=
(2)用樹(shù)狀圖或列表格列出所有問(wèn)題的可能的結(jié)果:
1 | 2 | 3 | |
1 | (1,2) | (1,3) | |
2 | (2,1) | (2,3) | |
3 | (3,1) | (3,2) |
由樹(shù)狀圖(列表)可知,共有6種等可能結(jié)果,編號(hào)為1、2的2個(gè)小方格空地種植草坪有2種,
所以P(編號(hào)為1、2的2個(gè)小方格空地種植草坪)=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值:
(1)﹣a2b+(ab2﹣3a2b)﹣2(ab2﹣2a2b),其中a=2,b=1;
(2)2(a2﹣b)+3a2﹣2(a2+b),其中(a2+m﹣1)2+|b+m+2|=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形A1B1C1D1的邊長(zhǎng)為2,且∠A1B1C1=60°,對(duì)角線A1C1,B1D1相較于點(diǎn)O,以點(diǎn)O為坐標(biāo)原點(diǎn),分別以O(shè)A1,OB1所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系,以B1D1為對(duì)角線作菱形B1C2D1A2 ,使得∠B1A2D1=60°;再以A2C2為對(duì)角線作菱形A2B2C2D2,使得∠A2B2C2=60°;再以B2D2為對(duì)角線作菱形B2C3D2A3,使得∠B2A3D2=60°…,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點(diǎn)A1,A2,A3,…,An,則點(diǎn)A2018的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(8,1),B(0,﹣3),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A,動(dòng)直線x=t(0<t<8)與反比例函數(shù)的圖象交于點(diǎn)M,與直線AB交于點(diǎn)N.
(1)求k的值;
(2)當(dāng)t=4時(shí),求△BMN面積;
(3)若MA⊥AB,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一條直線過(guò)點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.
(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);
(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)過(guò)線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時(shí),MN+3MP的長(zhǎng)度最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形是邊長(zhǎng)為4的正方形點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)不重合),連接CP,過(guò)點(diǎn)P作,且,過(guò)點(diǎn)M作,交于點(diǎn)聯(lián)結(jié),設(shè).
(1)當(dāng)時(shí),點(diǎn)的坐標(biāo)為( , )
(2)設(shè),求出與的函數(shù)關(guān)系式,寫(xiě)出函數(shù)的定義域。
(3)在軸正半軸上存在點(diǎn),使得是等腰三角形,請(qǐng)直接寫(xiě)出不少于4個(gè)符合條件的點(diǎn)的坐標(biāo)(用的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AC=2cm.現(xiàn)在將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)至△A′B′C′,使得點(diǎn)A′恰好落在AB上,連接BB′,則BB′的長(zhǎng)度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐探究題
(1)觀察下列有規(guī)律的數(shù):,,,,,…根據(jù)規(guī)律可知
①第10個(gè)數(shù)是________; 是第________個(gè)數(shù).
②計(jì)算________.(直接寫(xiě)出答案即可)
(2)是不為1的有理數(shù),我們把稱(chēng)為的差倒數(shù).如:2的差倒數(shù)是,的差倒數(shù)是.已知,是的差倒數(shù),是的差倒數(shù),是的差倒數(shù),…,依此類(lèi)推,是的差倒數(shù),則 ________.
(3)高斯函數(shù)[x],也稱(chēng)為取整函數(shù),即[x]表示不超過(guò)x的最大整數(shù).
例如:[2.3]=2,[-1.5]=-2.則下列結(jié)論:①[-2.1]+[1]=-2; ②[x]+[-x]=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)拓展課上,老師讓同學(xué)們探討特殊四邊形的做法:
如圖,先作線段,作射線(為銳角),過(guò)作射線平行于,再作和的平分線分別交和于點(diǎn)和,連接,則四邊形為菱形;
(1)你認(rèn)為該作法正確嗎?請(qǐng)說(shuō)明理由.
(2)若,并且四邊形的面積為,在上取一點(diǎn),使得.請(qǐng)問(wèn)圖中存在這樣的點(diǎn)嗎?若存在,則求出的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com