如圖,等邊△ABC中,點P在△ABC內(nèi),點Q在△ABC外,BP,Q三點在一條直線上,且∠ABP=∠ACQ,BP=CQ,問△APQ是什么形狀的三角形?試證明你的結(jié)論.

解:△APQ為等邊三角形.證明如下:

∵ △ABC為等邊三角形,∴ AB=AC

∵ ∠ABP=∠ACQBP=CQ,

∴ △ABP≌△ACQSAS).

AP=AQ,∠BAP=∠CAQ

∵ ∠BAC=∠BAP+∠PAC=60°,

∴ ∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°.

∴ △APQ是等邊三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,等邊△ABC中,E,D在AB,AC上,且EB=AD,BD與EC交于點F,則∠DFC=
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,AD是∠BAC的角平分線,E為AD上一點,以BE為一邊且在BE下方作等邊△BEF,連接CF.
(1)求證:AE=CF;
(2)G為CF延長線上一點,連接BG.若BG=5,BC=8,求CG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,D、E、F分別是各邊上的一點,且AD=BE=CF.
求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,D是BC上一點,以AD為邊作等腰△ADE,使AD=AE,∠DAE=80°,DE交AC于點F,∠BAD=15°,求∠FDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC中,AD=CE,BD和AE相交于F,BG⊥AE垂足為G,求∠FBG的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案