如圖,已知O是?ABCD的對(duì)角線的交點(diǎn),AC=6,BD=8,AB=5,請(qǐng)你算出四邊形ABCD的周長(zhǎng).

解:由平行四邊形的性質(zhì)得:,
在△AOB中,∵OB2+OA2=AB2
∴△AOB是直角三角形
∴AC⊥BD
∴平行四邊形ABCD是菱形
故此四邊形的周長(zhǎng)為20.
分析:首先根據(jù)平行四邊形的對(duì)角線互相平分,求得OA=3,OB=4.在三角形AOB中,根據(jù)勾股定理的逆定理可判定三角形AOB是直角三角形.再根據(jù)對(duì)角線互相垂直的平行四邊形是菱形,得到菱形ABCD.根據(jù)菱形的四條邊都相等,從而求得該四邊形的周長(zhǎng).
點(diǎn)評(píng):此題綜合運(yùn)用了平行四邊形的性質(zhì)、勾股定理的逆定理以及菱形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知O是AB的中點(diǎn),再加上什么條件,能使△AOC和△BOD全等?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知C是AB的中點(diǎn),D是AC的中點(diǎn),E是BC的中點(diǎn).
(1)若DE=9cm,求AB的長(zhǎng);
(2)若CE=5cm,求DB的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知M是AB的中點(diǎn),N是AC的中點(diǎn),若MN=5cm,則BC=
 
 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知M是AB的中點(diǎn),AC∥MD,AC=MD,試說明下面結(jié)論成立的理由:(1)△ACM≌△MDB;(2)CM=DB,CM∥DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知M是AB的中點(diǎn),下面哪個(gè)結(jié)論不是根據(jù)“M是AB的中點(diǎn)”推出來的( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案