【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y= 在同一坐標系內的圖象大致為( )
A.
B.
C.
D.
【答案】D
【解析】解:由拋物線的圖象可知,橫坐標為1的點,即(1,a+b+c)在第四象限,因此a+b+c<0; ∴雙曲線 的圖象在第二、四象限;
由于拋物線開口向上,所以a>0;
對稱軸x= >0,所以b<0;
拋物線與x軸有兩個交點,故b2﹣4ac>0;
∴直線y=bx+b2﹣4ac經(jīng)過第一、二、四象限.
故選:D.
【考點精析】本題主要考查了一次函數(shù)的圖象和性質和反比例函數(shù)的圖象的相關知識點,需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結論中不正確的是( )
A. 當AB=BC時,它是菱形 B. 當AC⊥BD時,它是菱形
C. 當∠ABC=90°時,它是矩形 D. 當AC=BD時,它是正方形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線l:y=x﹣1與x軸交于點A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1 , 使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點Bn的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=900,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD≌△ACE;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關系,并證明;
(3)在(2)的條件下,若BD=6,CF=8,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索題:(x-1)(x+1)=x2-1
(x-1)(x2+x=1)=x3-1
(x-1)(x4+x2+x=1)=x4-1
(x-1)(x5+x4+x2+x=1)=x5-1
根據(jù)前面的規(guī)律,回答下列問題:
(1) …+=_____________.
(2)當x=3時,…+=__________..
(3)求:…+的值。(請寫出解題過程)
(4)求 …+的值的個位數(shù)字。(只寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是反比例函數(shù)y1= (x>0)圖象上一點,過點A作x軸的平行線,交反比例函數(shù)y2= (x>0)的圖象于點B,連接OA、OB,若△OAB的面積為2,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,點A的坐標為(0,1),點B的坐標為(0,﹣2),反比例函數(shù)y= 的圖象經(jīng)過點C,一次函數(shù)y=ax+b的圖象經(jīng)過A、C兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)求反比例函數(shù)與一次函數(shù)的另一個交點M的坐標;
(3)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)在△ABC中,∠C=90°,AB=25cm,BC=15cm,若動點P從點C開始沿著C→B→A→C的路徑運動,且速度為每秒5cm,設點P運動的時間為t秒.
(1)點P運動2秒后,求△ABP的面積;
(2)如圖(2),當t為何值時,BP平分∠ABC;
(3)當△BCP為等腰三角形時,直接寫出所有滿足條件t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com