已知:如圖,⊙O1與⊙O2相交于點(diǎn)A和點(diǎn)B,且點(diǎn)O1在⊙O2上,過(guò)點(diǎn)A的直線CD分別與精英家教網(wǎng)⊙O1、⊙O2交于點(diǎn)C、D,過(guò)點(diǎn)B的直線EF分別與⊙O1、⊙O2交于點(diǎn)E、F,⊙O2的弦O1D交AB于P.
求證:(1)CE∥DF;
(2)O1A2=O1P•O1D.
分析:(1)要證明CE∥DF,根據(jù)平行線的判定,證明同旁內(nèi)角互補(bǔ)即可,可以借助圓的內(nèi)接四邊形角與角的關(guān)系;
(2)欲證O1A2=O1P•O1D,可證△AO1P∽△DO1A得出.
解答:精英家教網(wǎng)證明:(1)∵四邊形ABEC是⊙O1的內(nèi)接四邊形,
∴∠ABE+∠C=180°.
又四邊形ABFD是⊙O2的內(nèi)接四邊形,
∴∠ABE=∠ADF.
∴∠C+∠ADF=180°.
∴CE∥DF;

(2)連接O1B,則O1A=O1B.
∴∠O1AB=∠O1BA.
又∵∠O1BA=∠O1DA,
∴∠O1AP=∠O1DA.
又∵∠AO1P=∠DO1A,
∴△AO1P∽△DO1A.
O1A
O1D
=
O1P
O1A

∴O1A2=O1D•O1P.
點(diǎn)評(píng):考查了平行線的判定,圓的內(nèi)接四邊形的性質(zhì),圓周角定理.
能夠把線段乘積的形式轉(zhuǎn)化為比例的形式,通過(guò)相似三角形的性質(zhì)得出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知;如圖,⊙O1與⊙O2內(nèi)切于點(diǎn)A,⊙O2的直徑AC交⊙O1于點(diǎn)B,⊙O2的弦FC切⊙精英家教網(wǎng)O1于點(diǎn)D,AD的延長(zhǎng)線交⊙O2于點(diǎn)E,連接AF、EF、BD.
(1)求證:AC•AF=AD•AE;
(2)若O1O2=9,cos∠BAD=
23
,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于C點(diǎn),AB一條外公切線,A、B分別為切點(diǎn),連接AC、BC.設(shè)⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=
2
,則
R
r
的值為( 。
A、
2
B、
3
C、2
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1998•南京)已知,如圖,⊙O1與⊙O2相交,點(diǎn)P是其中一個(gè)交點(diǎn),點(diǎn)A在⊙O2上,AP的延長(zhǎng)線交⊙O1于點(diǎn)B,AO2的延長(zhǎng)線交⊙O1于點(diǎn)C、D,交⊙O2于點(diǎn)E,連接PC、PE、PD,且
PC
PD
=
CE
DE
,過(guò)A作⊙O1的切線AQ,切點(diǎn)為Q.求證:
(1)∠CPE=∠DPE;
(2)AQ2-AP2=PC•PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點(diǎn),直線l與⊙O1、⊙O2分別切于B,C點(diǎn),若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,⊙O1與⊙O2相交于A、B,若兩圓半徑分別為12和5,O1O2=13,則AB=
120
13
120
13

查看答案和解析>>

同步練習(xí)冊(cè)答案