【題目】如圖,在△OAC中,以點O為圓心、OA長為半徑作⊙O,作OB⊥OC交⊙O于點B,連接AB交OC于點D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關系,并證明你的結(jié)論;
(2)若OA=10,OD=2,求線段AC的長.
【答案】(1)AC是⊙O的切線(2)線段AC的長為24
【解析】試題分析:(1)根據(jù)已知條件“∠CAD=∠CDA”、對頂角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根據(jù)等腰三角形OAB的兩個底角相等、直角三角形的兩個銳角互余的性質(zhì)推知∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,可得AC是⊙O的切線;
(2)根據(jù)“等角對等邊”可以推知AC=DC,所以由圖形知OC=OD+CD;然后利用(1)中切線的性質(zhì)可以在Rt△OAC中,根據(jù)勾股定理來求AC的長度.
試題解析:解:(1)AC是⊙O的切線.證明:∵點A,B在⊙O上,∴OB=OA,∴∠OBA=∠OAB,∵∠CAD=∠CDA=∠BDO,∴∠CAD+∠OAB=∠BDO+∠OBA,∵BO⊥OC,
∴∠BDO+∠OBA=90°,∴∠CAD+∠OAB=90°,∴∠OAC=90°,即OA⊥AC,又∵OA是⊙O的半經(jīng),∴AC是⊙O的切線;
(2)設AC的長為x.∵∠CAD=∠CDA,∴CD的長為x.由(1)知OA⊥AC,
∴在Rt△OAC中,OA2+AC2=OC2,即102+x2=(2+x)2,∴x=24,
即線段AC的長為24.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=16cm,AD=4cm,點P、Q分別從A、B同時出發(fā),點P在邊AB上沿AB方向以2cm/s的速度勻速運動,點Q在邊BC上沿BC方向以1cm/s的速度勻速運動,當其中一點到達終點時,另一點也隨之停止運動.設運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關于x的函數(shù)關系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】不透明袋子中裝有一個幾何體模型,兩位同學摸該模型并描述它的特征,甲同學:它有4個面是三角形;乙同學:它有8條棱,該模型的形狀對應的立體圖形可能是( )
A.三棱柱
B.四棱柱
C.三棱錐
D.四棱錐
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=-x2+mx+3與x軸交于點A、B兩點,與y軸交于C點,點B的坐標為(3,0),拋物線與直線y=-x+3交于C、D兩點.連接BD、AD.
(1)求m的值.
(2)拋物線上有一點P,滿足S△ABP=4S△ABD,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉辦“我的中國夢”演講比賽,有9名學生參加比賽,他們比賽的最終成績各不相同,取前5名同學參加決賽.其中一名同學知道自己的分數(shù)后,要判斷自己能否進入決賽,只需要知道這9名同學分數(shù)的( )
A. 中位數(shù)B. 眾數(shù)C. 平均數(shù)D. 方差
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】PM2.5是指大氣中直徑小于或等于2.5μm(0.0000025m)的顆粒物,含有大量有毒、有害物質(zhì),也稱可入肺顆粒物.將0.0000025用科學記數(shù)法表示為( )
A.25×10﹣7
B.2.5×10﹣6
C.0.25×10﹣5
D.2.5×106
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com