精英家教網(wǎng)邊長為2的正方形ABCD的兩條對角線交于點O,把BA與CD同時分別繞點B和C逆時針方向旋轉(zhuǎn),此時正方形ABCD隨之變成四邊形A′BCD′,設(shè)A′C,BD′交于點O,則旋轉(zhuǎn)60°時,由點O運(yùn)動到點O′所經(jīng)過的路徑長是
 
分析:點O以BC中點為圓心,BC的一半為半徑,逆時針旋轉(zhuǎn)了60度,根據(jù)弧長公式即可求得由點O運(yùn)動到點O′經(jīng)過的路徑長為
1
3
п.
解答:解:∵正方形ABCD的邊長為2,
∴BC的一半為1
∴由點O運(yùn)動到點O′經(jīng)過的路徑長為:
60π×1
180
=
1
3
π.
故答案為:
1
3
π.
點評:本題考查旋轉(zhuǎn)的性質(zhì).旋轉(zhuǎn)變化前后,對應(yīng)點到旋轉(zhuǎn)中心的距離相等以及每一對對應(yīng)點與旋轉(zhuǎn)中心連線所構(gòu)成的旋轉(zhuǎn)角相等.要注意旋轉(zhuǎn)的三要素:①定點-旋轉(zhuǎn)中心;②旋轉(zhuǎn)方向;③旋轉(zhuǎn)角度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知點E是邊長為2的正方形ABCD的AB邊的延長線上一點,P為邊AB上的一個動點(不與A、B重合),直線PF⊥PD,∠EBC的平分線與PF交于點Q.
(1)如圖1,當(dāng)P為AB的中點時,求PD的長,并比較PD與PQ長的大小;
(2)如圖2,在點P運(yùn)動過程中,PD與PQ長的大小關(guān)系會發(fā)生變化嗎?為什么?
(3)設(shè)PB=x,△BPQ和△PAD的面積分別是S1、S2,又y=
S2S1
,試求y與x之間的函數(shù)關(guān)系式,并判斷y隨PB的變化而怎樣變化?精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖所示,在邊長為a的正方形中挖去一個邊長為b的小正方形(a>b),再把剩余的部分剪拼成一個矩形,通過計算圖形(陰影部分的面積),驗證了一個等式是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2011•石家莊二模)閱讀材料:
我們將能完全覆蓋平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.
例如:線段AB的最小覆蓋圓就是以線段AB為直徑的圓.
操作探究:
(1)如圖1:已知線段AB與其外一點C,作過A、B、C三點的最小覆蓋圓;(不寫作法,保留作圖痕跡)
(2)邊長為1cm的正方形的最小覆蓋圓的半徑是
2
2
2
2
cm;
如圖2,邊長為1cm的兩個正方形并列在一起,則其最小覆蓋圓的半徑是
5
2
5
2
cm;
如圖3,半徑為1cm的兩個圓外切,則其最小覆蓋圓的半徑是
2
2
cm.
聯(lián)想拓展:
⊙O1的半徑為8,⊙O2,⊙O3的半徑均為5.
(1)當(dāng)⊙O1、⊙O2、⊙O3兩兩外切時(如圖4),則其最小覆蓋圓的半徑是
40
3
40
3

(2)當(dāng)⊙O1、⊙O2、⊙O3兩兩相切時,(1)中的結(jié)論還成立嗎?如果不成立,則其最小覆蓋圓的半徑是
13
13
,并作出示意圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知E是邊長為12的正方形的邊AB上一點,且AE=5,P是對角線AC上任意一點,則PE+PB的最小值是
13
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,兩個長方形的一部分重疊在一起,重疊部分是邊長為3的正方形,則陰影部分的面積是
ab+cd-18
ab+cd-18

查看答案和解析>>

同步練習(xí)冊答案