(2006•宜賓)如圖,已知AB是⊙O的直徑,弦BC=9,連接AC,D是圓周上一點(diǎn),連接DB、DC,且tan∠BDC=,求⊙O的直徑AB的長(zhǎng).

【答案】分析:由圓周角定理得∠A=∠D,由直徑對(duì)的圓周角是直角知,∠ACB=90°,所以AC=BC÷tanA=12,由勾股定理求得AB=15.
解答:解:∵∠A與∠D對(duì)的弧相等,
∴∠A=∠D,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴tanA=BC:AC=3:4,
∵BC=9,
∴AC=12,
在Rt△ABC中,AB==15.
點(diǎn)評(píng):本題利用了圓周角定理,直徑對(duì)的圓周角是直角,直角三角形的性質(zhì),正切的概念,勾股定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•宜賓)如圖,矩形紙片OABC放在直角坐標(biāo)系中,使點(diǎn)O為坐標(biāo)原點(diǎn),邊OA、OC分別落在x軸、y軸的正半軸上,且OA=5,OC=3,將矩形紙片折疊,使點(diǎn)O落在線段CB上,設(shè)落點(diǎn)為P,折痕為EF.
(1)當(dāng)CP=2時(shí),恰有OF=,求折痕EF所在直線的函數(shù)表達(dá)式;
(2)在折疊中,點(diǎn)P在線段CB上運(yùn)動(dòng),設(shè)CP=x(0≤x≤5),過(guò)點(diǎn)P作PT∥y軸交折痕EF于點(diǎn)T,設(shè)點(diǎn)T的縱坐標(biāo)為y,請(qǐng)用x表示y,并判斷點(diǎn)T運(yùn)動(dòng)形成什么樣的圖象;
(3)請(qǐng)先探究,再猜想:怎樣折疊,可使折痕EF最長(zhǎng)?并計(jì)算出EF最長(zhǎng)時(shí)的值.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2006•宜賓)如圖,在直角坐標(biāo)系中,一次函數(shù)y=-x+3的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=的圖象交于點(diǎn)B(-2,m)和點(diǎn)C.
(1)求反比例函數(shù)的解析式.
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(08)(解析版) 題型:解答題

(2006•宜賓)如圖,矩形紙片OABC放在直角坐標(biāo)系中,使點(diǎn)O為坐標(biāo)原點(diǎn),邊OA、OC分別落在x軸、y軸的正半軸上,且OA=5,OC=3,將矩形紙片折疊,使點(diǎn)O落在線段CB上,設(shè)落點(diǎn)為P,折痕為EF.
(1)當(dāng)CP=2時(shí),恰有OF=,求折痕EF所在直線的函數(shù)表達(dá)式;
(2)在折疊中,點(diǎn)P在線段CB上運(yùn)動(dòng),設(shè)CP=x(0≤x≤5),過(guò)點(diǎn)P作PT∥y軸交折痕EF于點(diǎn)T,設(shè)點(diǎn)T的縱坐標(biāo)為y,請(qǐng)用x表示y,并判斷點(diǎn)T運(yùn)動(dòng)形成什么樣的圖象;
(3)請(qǐng)先探究,再猜想:怎樣折疊,可使折痕EF最長(zhǎng)?并計(jì)算出EF最長(zhǎng)時(shí)的值.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•宜賓)如圖,矩形紙片OABC放在直角坐標(biāo)系中,使點(diǎn)O為坐標(biāo)原點(diǎn),邊OA、OC分別落在x軸、y軸的正半軸上,且OA=5,OC=3,將矩形紙片折疊,使點(diǎn)O落在線段CB上,設(shè)落點(diǎn)為P,折痕為EF.
(1)當(dāng)CP=2時(shí),恰有OF=,求折痕EF所在直線的函數(shù)表達(dá)式;
(2)在折疊中,點(diǎn)P在線段CB上運(yùn)動(dòng),設(shè)CP=x(0≤x≤5),過(guò)點(diǎn)P作PT∥y軸交折痕EF于點(diǎn)T,設(shè)點(diǎn)T的縱坐標(biāo)為y,請(qǐng)用x表示y,并判斷點(diǎn)T運(yùn)動(dòng)形成什么樣的圖象;
(3)請(qǐng)先探究,再猜想:怎樣折疊,可使折痕EF最長(zhǎng)?并計(jì)算出EF最長(zhǎng)時(shí)的值.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•宜賓)如圖,在直角坐標(biāo)系中,一次函數(shù)y=-x+3的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=的圖象交于點(diǎn)B(-2,m)和點(diǎn)C.
(1)求反比例函數(shù)的解析式.
(2)求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案