【題目】某中學開通了互聯網家校合育教育平臺,為了解家長使用平臺的情況,學校將家長的使用情況分為”經常使用”、“偶爾使用”“和“不使用”三種類型,借助該平臺大數據功能,匯總出該校八(1)班和八(2)班全體家長的使用情況,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖:
請根據圖中信息解答下列問題
(1)此次調查的家長總人數為 ;
(2)扇形統(tǒng)計圖中代表“不使用”類型的扇形圓心角的度數是 °,并補全條形統(tǒng)計圖;
(3)若該校八年級學生家長共有1200人,根據此次調查結果估計該校八年級中“經常使用”類型的家長約有多少人?
【答案】(1)100(2)43.2°(3)336
【解析】
(1)用“偶爾使用”的人數和除以其對應百分比可得;
(2)用360°乘以“不使用”人數占總人數的比例可得其圓心角度數,再由各類型人數之和等于總人數求解,補全圖形可得;
(3)總人數乘以樣本中“經常使用”類型的家長人數占總人數的比例可得.
解:(1)此次調查的家長總人數為(32+26)÷58%=100(人),
故答案為:100;
(2)扇形統(tǒng)計圖中代表“不使用”類型的扇形圓心角的度數是360°×=43.2°,
補全條形統(tǒng)計圖如下:
故答案為:43.2;
(3)估計該校八年級中“經常使用”類型的家長約有1200×=336(人).
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.
(1)求證:△BOE≌△DOF;
(2)若OA= BD,則四邊形ABCD是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:關于x的一元二次方程mx2-3(m-1)x+2m-3=0(m>3).
(1)求證:方程總有兩個不相等的實數根;
(2)設方程的兩個實數根分別為x1,x2,且x1<x2.
①求方程的兩個實數根x1,x2(用含m的代數式表示);
②若mx1<8-4x2,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(4分)如圖,直線l外不重合的兩點A、B,在直線l上求作一點C,使得AC+BC的長度最短,作法為:①作點B關于直線l的對稱點B′;②連接AB′與直線l相交于點C,則點C為所求作的點.在解決這個問題時沒有運用到的知識或方法是( )
A.轉化思想
B.三角形的兩邊之和大于第三邊
C.兩點之間,線段最短
D.三角形的一個外角大于與它不相鄰的任意一個內角
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】世界上大部分國家都使用攝氏溫度(℃),但美國,英國等國家的天氣預報都使用華氏溫度(℉),兩種計量之間有如下對應:
攝氏溫度(℃) | … | 0 | 10 | … |
華氏溫度(℉) | … | 32 | 50 | … |
已知華氏溫度y(℉)是攝氏溫度x(℃)的一次函數.
求該一次函數的解析式;
當華氏溫度14℉時,求其所對應的攝氏溫度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在射線BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6 ,O是射線BD上一點,⊙O與BA,BC都相切,與BO的延長線交于點M.過M作EF⊥BD交線段BA(或射線AD)于點E,交線段BC(或射線CD)于點F.以EF為邊作矩形EFGH,點G,H分別在圍成菱形的另外兩條射線上.
(1)求證:BO=2OM.
(2)設EF>HE,當矩形EFGH的面積為24 時,求⊙O的半徑.
(3)當HE或HG與⊙O相切時,求出所有滿足條件的BO的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com