【題目】如圖,△ABC中,P,Q分別是BC,AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別是R,S,若AQ=PQ,PR=PS,下面三個結(jié)淪:①AS=AR:②QP∥AR;③△BRP≌△CSP.其中正確的是( )
A. ①③ B. ②③ C. ①② D. ①②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡再求值:當(dāng)a=9時,求a+的值,甲乙兩人的解答如下:
甲的解答為:原式=a+=a+(1-a)=1.
乙的解答為:原式=a+=a+(a-1)=2a-1=17.
兩種解答中,_____的解答是錯誤的,錯誤的原因是當(dāng)a=9時______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(理解新知)
如圖①,已知,在內(nèi)部畫射線,得到三個角,分別為、、,若這三個角中有一個角是另外一個角的2倍,則稱射線為的“2倍角線”
(1)角的平分線 這個角的“2倍角線”;(填“是”或“不是”)
(2)若,射線為的“2倍角線”,則 ;
(解決問題)
如圖②,已知,射線從出發(fā),以每秒的速度繞點(diǎn)逆時針旋轉(zhuǎn):射線從出發(fā),以每秒的速度繞點(diǎn)順時針旋轉(zhuǎn),射線、同時出發(fā),當(dāng)一條射線回到出發(fā)位置的時候,整個運(yùn)動隨之停止.設(shè)運(yùn)動的時間為.
(3)當(dāng)射線、旋轉(zhuǎn)到同一條直線上時,求的值;
(4)若、、三條射線中,一條射線恰好是以另外兩條射線為邊的角的“2倍角線”,直接寫出所有可能的的值.(本題中所研究的角都是小于等于的角.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,AB=6,N為AB上一點(diǎn),且AN=2,∠BAC的平分線交BC于點(diǎn)D,M是AD上的動點(diǎn),連結(jié)BM,MN,則BM+MN的最小值是( 。
A. 8 B. 10 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】交警通常根據(jù)剎車后輪滑行的距離來測算車輛行駛的速度,所用的經(jīng)驗(yàn)公式是u=16.其中u表示車速(單位:km/h),d表示剎車距離(單位:m),f表示摩擦系數(shù).在一次交通事故中,測得d=20m,f=1.44,而發(fā)生交通事故的路段限速為80km/h,肇事汽車是否違規(guī)超速行駛?說明理由.(參考數(shù)據(jù):≈1.4,≈2.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中,小正方形的邊長為1,△ABC的頂點(diǎn)在格點(diǎn)上.
(1)判斷△ABC是否是直角三角形?并說明理由.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角△ABC內(nèi)接于⊙O,點(diǎn)D是直角△ABC斜邊AB上的一點(diǎn),過點(diǎn)D作AB的垂線交AC于E,過點(diǎn)C作∠ECP=∠AED,CP交DE的延長線于點(diǎn)P,連結(jié)PO交⊙O于點(diǎn)F.
(1)求證:PC是⊙O的切線;
(2)若PC=3,PF=1,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4.
(1)若BC=2,求AB的長;
(2)若BC=a,AB=c,求代數(shù)式(c﹣2)2﹣(a+4)2+4(c+2a+3)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點(diǎn)A、B、C、D分別是“果圓”與坐標(biāo)軸的交點(diǎn),拋物線的解析式為y=(x-1)2-4,AB為半圓的直徑,求這個“果圓”被y軸截得的弦CD的長 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com