分析 感知:由△ABC是等邊三角形,可得AC=CB,∠ACE=∠B=60°,又由BD=CE,即可證得△ACE≌△CBD;
探究:根據(jù)△ABC是等邊三角形,得到AC=CB,∠A=∠ACB=60°,由SAS證明△ACE≌△CBD.
應用:證明△ACE≌△CBD,得到∠AEC=∠CDB=β,根據(jù)外角的性質(zhì)得到∠CAB=∠ACE+∠AEC,即可解答.
解答 解:感知:∵△ABC是等邊三角形,
∴AC=CB,∠CAE=∠B=60°,
在△ACE和△CBD中,
$\left\{\begin{array}{l}{AC=CB}\\{∠CAE=∠B}\\{CE=BD}\end{array}\right.$
∴△ACE≌△CBD(SAS).
探究:△ACE與△CBD是否仍然全等,
∵△ABC是等邊三角形,
∴AC=CB,∠A=∠ACB=60°,
∴∠EAC=∠DCB,
在△ACE和△CBD中,
$\left\{\begin{array}{l}{AE=CD}\\{∠EAC=∠DCB}\\{AC=BC}\end{array}\right.$
∴△ACE≌△CBD.
應用:∵點O是AC邊的垂直平分線與BC的交點,
∴CO=AO,
∴∠ACB=∠CAO=α,
∵∠ACB+∠BCD=180°,∠EAC+∠CAO=180°,
∴∠EAC=∠DCB,
∵△ABC為等邊三角形,
∴AC=BC,
在△EAC和△DCB中,
$\left\{\begin{array}{l}{AE=CD}\\{∠EAC=∠BCD}\\{AC=CB}\end{array}\right.$
∴△EAC≌△DCB,
∴∠AEC=∠CDB=β,
∵∠CAB=∠ACE+∠AEC,
∴∠ACE=∠CAB-∠AEC=α-β.
故答案為:α-β.
點評 本題考查了全等三角形的性質(zhì)定理與判定定理,解決本題的關(guān)鍵是證明△EAC≌△DCB.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | (-5,-2) | B. | (5,2) | C. | (-5,2) | D. | (2,5) |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com