在Rt△ABC中,∠C=90°,AB=5,BC=3,點(diǎn)D、E分別在BC、AC上,且BD=CE,設(shè)點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)為F,若DF∥AB,則BD的長(zhǎng)為   
【答案】分析:根據(jù)題意作出草圖,根據(jù)勾股定理求出AC,根據(jù)軸對(duì)稱的性質(zhì)可得EF=CE,根據(jù)兩直線平行,同位角相等可得∠A=∠EGF,利用相似三角形對(duì)應(yīng)邊成比例列式表示出GE,再表示出CG,然后根據(jù)平行線分線段成比例定理列式計(jì)算即可得解.
解答:解:如圖,設(shè)BD=CE=x,
∵∠C=90°,AB=5,BC=3,
∴AC===4,
∵點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)為F,
∴EF=CE=x,
∵DF∥AB,
∴∠A=∠EGF,
∴△ABC∽△GEF,
=,
=,
解得GE=x,
∴CG=GE+CE=x+x=x,
∵DF∥AB,
=,
=,
解得x=1,
即BD=1.
故答案為:1.
點(diǎn)評(píng):本題考查了平行線分線段成比例定理,軸對(duì)稱的性質(zhì),相似三角形的判定與性質(zhì),難度不是很大,找準(zhǔn)線段的對(duì)應(yīng)關(guān)系是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案