【題目】如圖,點(diǎn)A在拋物線y=x2﹣2x+2上運(yùn)動(dòng),過點(diǎn)A作AC上x軸于點(diǎn)C,以AC為對(duì)角線作矩形ABCD,連結(jié)BD,則BD的最小值為( 。
A. B. 1 C. D. 2
【答案】B
【解析】
先利用配方法得到拋物線的頂點(diǎn)坐標(biāo)為(1,1),再根據(jù)矩形的性質(zhì)得BD=AC,由于AC的長(zhǎng)等于點(diǎn)A的縱坐標(biāo),所以當(dāng)點(diǎn)A在拋物線的頂點(diǎn)時(shí),點(diǎn)A到x軸的距離最小,最小值為1,從而得到BD的最小值.
解:∵y=x2﹣2x+2=(x﹣1)2+1,
∴拋物線的頂點(diǎn)坐標(biāo)為(1,1),
∵四邊形ABCD為矩形,
∴BD=AC,
而AC⊥x軸,
∴AC的長(zhǎng)等于點(diǎn)A的縱坐標(biāo),
當(dāng)點(diǎn)A在拋物線的頂點(diǎn)時(shí),點(diǎn)A到x軸的距離最小,最小值為1,
∴對(duì)角線BD的最小值為1.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)是否存在點(diǎn)P,使△POC是以O(shè)C為底邊的等腰三角形?若存在,求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說(shuō)法錯(cuò)誤的是
A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一均勻硬幣,平均100次出現(xiàn)正面朝上50次
D. 通過拋一均勻硬幣確定誰(shuí)先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的三個(gè)方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一個(gè)方程有實(shí)根,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MAN=30°,點(diǎn)C、B分別在射線AM、AN上,AB=6,∠ACB=30°.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿射線AN以每秒3個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).過點(diǎn)P作PQ⊥AN交射線AM于點(diǎn)Q,點(diǎn)E是線段AQ的中點(diǎn),連結(jié)PE.設(shè)△PQE與△ABC重疊部分圖形的面積為S平方單位,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒(t>O).
(1)求PQ的長(zhǎng)(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)Q在邊AC上時(shí),求S與t之間的函數(shù)關(guān)系式.
(3)當(dāng)△PQE與△ABC重疊部分圖形是一個(gè)面積為的三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB是⊙O的切線,切點(diǎn)為B,AO交⊙O于點(diǎn)C,過點(diǎn)C作DC⊥OA,交AB于點(diǎn)D.
(1)求證:∠CDO=∠BDO;
(2)若∠A=30°,⊙O的半徑為4,求陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點(diǎn)A在x軸上,OA=4,OC=3,點(diǎn)D為BC邊上一點(diǎn),以AD為一邊在與點(diǎn)B的同側(cè)作正方形ADEF,連接OE。當(dāng)點(diǎn)D在邊BC上運(yùn)動(dòng)時(shí),OE的長(zhǎng)度的最小值是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與y軸交于點(diǎn)C,與x軸交于A、B兩點(diǎn)(點(diǎn)A在原點(diǎn)左側(cè),點(diǎn)B在原點(diǎn)右側(cè)),且∠ACB=90°,tan∠BAC= .
①求拋物線的解析式;
②若拋物線頂點(diǎn)為P,求四邊形APCB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com