【題目】如圖1,OA=2,OB=4,A點(diǎn)為頂點(diǎn),AB為腰,在第三象限作等腰RtABC.

(1)C點(diǎn)的坐標(biāo)及ABC的面積;

(2)如圖2,Py軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)在y軸負(fù)半軸上向下運(yùn)動(dòng)時(shí),若以P為直角頂點(diǎn),PA為腰作等腰RtAPD,過(guò)DDEx軸于E點(diǎn),求證:OP=DE+2

(3)已知點(diǎn)F坐標(biāo)為(-2,-2),當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),請(qǐng)?jiān)趫D3作出等腰RtFGH,且始終保持∠GFH=90°,若FGy軸負(fù)半軸交于點(diǎn)G0,m),FHx軸正半軸交于點(diǎn)Hn,0), 當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),以下結(jié)論:①m-n為定值;②m+n為定值,請(qǐng)判斷其中哪些結(jié)論是正確的,并求出其值.

【答案】1)①C-6,-2);②10;(2)證明見解析;(3)②,m+n=-4.

【解析】

1)如圖1,過(guò)CCMx軸于M點(diǎn),則可以求出MAC≌△OBA,可得CM=OA=1MA=OB=2,故點(diǎn)C的坐標(biāo)為(-3,-1);再由勾股定理求出AB、AC的長(zhǎng)即可求出ABC的面積;

2)如圖2,過(guò)DDQOPQ點(diǎn),則DE=OQ,利用三角形全等的判定定理可得AOP≌△PQDAAS),進(jìn)一步可得PQ=OA=2,即OP-DE=2,從而得到結(jié)論;

1)①如圖1,過(guò)CCMx軸于M點(diǎn),

∵∠MAC+OAB=90°,∠OAB+OBA=90°

則∠MAC=OBA,

MACOBA

,

∴△MAC≌△OBAAAS),

CM=OA=2,MA=OB=4,

OM=OA+AM=2+4=6,

∴點(diǎn)C的坐標(biāo)為(-6-2).

②在RtAOB中,AB=AC=

SACB=ACAB=10

2)證明:如圖2,過(guò)DDQOPQ點(diǎn),則DE=OQ

OP-DE=OP-OQ=PQ,

∵∠APO+QPD=90°

APO+OAP=90°,

∴∠QPD=OAP

AOPPQD中,

,

∴△AOP≌△PQDAAS).

PQ=OA=2

OP = DE+2

3)結(jié)論②是正確的,m+n=-4

如圖3,過(guò)點(diǎn)F分別作FSx軸于S點(diǎn),FTy軸于T點(diǎn),則FS=FT=2,∠FHS=HFT=FGT,

FSHFTG中,

FSH≌△FTGAAS

GT=HS,

又∵G0,m),Hn,0),點(diǎn)F坐標(biāo)為(-2-2),

OT═OS=2,OG=|m|=-m,OH=n,

GT=OG-OT=-m-2HS=OH+OS=n+2,

-2-m=n+2

m+n=-4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有2位股東,25名工人,從2006年至2008年,公司每年股東的總利潤(rùn)和每年工人的工資總額如圖所示.

(1)填寫下表

年份

2006

2007

2008

工人的平均工資/

   

   

   

股東的平均工資/

   

   

   

(2)假設(shè)在以后的若干年中,每年工人的工資和股東的利潤(rùn)都按圖中的速度增長(zhǎng),那么到哪一年,股東的平均利潤(rùn)是工人的平均工資的10倍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰RtABC中,∠ACB=90°,AC=BC,點(diǎn)DE分別在邊AB、CB上,CD=DE,∠CDB=DEC,過(guò)點(diǎn)CCFDE于點(diǎn)F,交AB于點(diǎn)G,

1)求證:ACD≌△BDE;

2)求證:CDG為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC中,AB=AC≠BC,點(diǎn)D和點(diǎn)A在直線BC的同側(cè),BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,連接AD,求∠ADB的度數(shù).(不必解答)

(1)小聰先從特殊問(wèn)題開始研究,當(dāng)α=90°,β=30°時(shí),利用軸對(duì)稱知識(shí),以AB為對(duì)稱軸構(gòu)造△ABD的軸對(duì)稱圖形△ABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形等相關(guān)知識(shí)便可解決這個(gè)問(wèn)題.

請(qǐng)結(jié)合小聰研究問(wèn)題的過(guò)程和思路,在這種特殊情況下填空:△D′BC的形狀是   三角形;∠ADB的度數(shù)為   

(2)在原問(wèn)題中,當(dāng)∠DBC<∠ABC(如圖1)時(shí),請(qǐng)計(jì)算∠ADB的度數(shù);

(3)在原問(wèn)題中,過(guò)點(diǎn)A作直線AE⊥BD,交直線BDE,其他條件不變?nèi)?/span>BC=7,AD=2.請(qǐng)直接寫出線段BE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校數(shù)學(xué)興趣小組進(jìn)行戶外興趣活動(dòng):測(cè)量河中橋墩露出水面部分AB的高度.如圖所示,在點(diǎn)C處測(cè)得∠BCA=45°.在坡比為i=1:3,高度DE=15米的小山坡頂E處測(cè)得橋墩頂部B的仰角為20°,則橋墩露出水面部分AB的高度約為(精確到1米,參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)( 。

A. 34 B. 48 C. 49 D. 64

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列動(dòng)車從甲地開往乙地,一列普通列車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)普通列車行駛的時(shí)間為(小時(shí)),兩車之間的距離為(千米),圖中的折線表示之間的函數(shù)關(guān)系。

根據(jù)圖象回答下列問(wèn)題:

(1)甲地與乙地相距______千米,兩車出發(fā)后______小時(shí)相遇;

(2)普通列車到達(dá)終點(diǎn)共需_______小時(shí),普通列車的速度是______千米/小時(shí);

(3)動(dòng)車的速度是________千米/小時(shí);

(4)的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為使中華傳統(tǒng)文化教育更具有實(shí)效性,軍寧中學(xué)開展以我最喜愛(ài)的傳統(tǒng)文化種類為主題的調(diào)查活動(dòng),圍繞在詩(shī)詞、國(guó)畫、對(duì)聯(lián)、書法、戲曲五種傳統(tǒng)文化中,你最喜愛(ài)哪一種?(必選且只選一種)的問(wèn)題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果整理后繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息回答下列問(wèn)題:

(1)本次調(diào)查共抽取了多少名學(xué)生?

(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若軍寧中學(xué)共有960名學(xué)生,請(qǐng)你估計(jì)該中學(xué)最喜愛(ài)國(guó)畫的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,從A地到B地的公路需要經(jīng)過(guò)C地,根據(jù)規(guī)劃,將在A,B兩地之間修建一條筆直的公路.已知AC=10千米,CAB=34°,∠CBA=45°,求改直后公路AB的長(zhǎng)(結(jié)果精確到0.1千米)

(參考數(shù)據(jù):sin34°≈0.559,cos34°≈0.829,tan34°≈0.675)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=x2﹣(3m+1)x+2m2+m(m>0),與y軸交于點(diǎn)C,與x軸交于點(diǎn)A(x1,0),B(x2,0),且x1<x2

(1)求2x1﹣x2+3的值;

(2)當(dāng)m=2x1﹣x2+3時(shí),將此拋物線沿對(duì)稱軸向上平移n個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在ABC的內(nèi)部(不包括ABC的邊),求n的取值范圍(直接寫出答案即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案