在△ABC中,AB=AC=5,BC=6,以AC為一邊作正方形ACDE,過點(diǎn)D作DF⊥BC交直線BC于點(diǎn)F,連接AF,請你畫出圖形,直接寫出AF的長,并畫出體現(xiàn)解法的輔助線.
解:如圖1所示:
∵AB=AC=5,BC=6,
∴AM=4,
∵∠ACM+∠DCF=90°,∠MAC+∠ACM=90°,
∴∠CAM=∠DCF,
在△AMC和△CFD中
,
∴△AMC≌△CFD(AAS),
∴AM=CF=4,
故AF==,
如圖2所示:
∵AB=AC=5,BC=6,
∴AM=4,MC=3,
∵∠ACM+∠DCF=90°,∠MAC+∠ACM=90°,
∴∠CAM=∠DCF,
在△AMC和△CFD中
,
∴△AMC≌△CFD(AAS),
∴AM=FC=4,
∴FM=FC﹣MC=1,
故AF==.
注:每圖1分(圖1中沒有輔助線、沒有直角符號均不給分;圖2中沒有輔助線、沒有直角符號、點(diǎn)B在正方形外均不給分).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,以△ABC的各邊為邊,在BC的同側(cè)分別作三個(gè)正五邊形.它們分別是正五邊形ABFKL、BCJIE、ACHGD,試探究:
(1)四邊形ADEF是什么四邊形?
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形ADEF是正方形?
(不需證明)
(3)四邊形ADEF一定存在嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)B、E、C、F在一條直線上,AB∥DE,BE=CF,請?zhí)砑右粋(gè)條件 ,使△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,直線AB與x軸、y軸分別交于點(diǎn)A,B,直線CD與x軸、y軸分別交于點(diǎn)C,D,AB與CD相交于點(diǎn)E,線段OA,OC的長是一元二次方程x2﹣18x+72=0的兩根(OA>OC),BE=5,tan∠ABO=.
(1)求點(diǎn)A,C的坐標(biāo);
(2)若反比例函數(shù)y=的圖象經(jīng)過點(diǎn)E,求k的值;
(3)若點(diǎn)P在坐標(biāo)軸上,在平面內(nèi)是否存在一點(diǎn)Q,使以點(diǎn)C,E,P,Q為頂點(diǎn)的四邊形是矩形?若存在,請寫出滿足條件的點(diǎn)Q的個(gè)數(shù),并直接寫出位于x軸下方的點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若將拋物線y=x2向右平移2個(gè)單位,再向上平移3個(gè)單位,則所得拋物線的表達(dá)式為( )
| A. | y=(x+2)2+3 | B. | y=(x﹣2)2+3 | C. | y=(x+2)2﹣3 | D. | y=(x﹣2)2﹣3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=8cm.BC=4cm,CD=5cm.動點(diǎn)P從點(diǎn)B開始沿折線BC﹣CD﹣DA以1cm/s的速度運(yùn)動到點(diǎn)A.設(shè)點(diǎn)P運(yùn)動的時(shí)間為t(s),△PAB面積為S(cm2).
(1)當(dāng)t=2時(shí),求S的值;
(2)當(dāng)點(diǎn)P在邊DA上運(yùn)動時(shí),求S關(guān)于t的函數(shù)表達(dá)式;
(3)當(dāng)S=12時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
(1)寫出一個(gè)只含字母x的代數(shù)式,要求此代數(shù)式有意義,字母x必須取全體大于1的實(shí)數(shù),且此代數(shù)式的值恒為正數(shù);
(2)若x是方程x2-x-2=0的根,求(1)中代數(shù)式的值.
【設(shè)計(jì)意圖】基礎(chǔ)且開放題,考查分式有意義,二次根式的被開方數(shù)為非負(fù)數(shù),方程的解,考查學(xué)生思維的嚴(yán)密性.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com