在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等邊三角形DEF從初始位置(點(diǎn)E與點(diǎn)B重合,EF落在BC上,如圖1所示)在線段BC上沿BC方向以每秒1個(gè)單位的速度平移,DE、DF分別與AB相交于點(diǎn)M、N.當(dāng)點(diǎn)F運(yùn)動(dòng)到點(diǎn)C時(shí),△DEF停止運(yùn)動(dòng),此時(shí)點(diǎn)D恰好落在AB上.在△DEF開始運(yùn)動(dòng)的同時(shí),如果點(diǎn)P以每秒2個(gè)單位的速度從D點(diǎn)出發(fā)沿DE→EF運(yùn)動(dòng),最終運(yùn)動(dòng)到F點(diǎn).若設(shè)△DEF平移的時(shí)間為x秒,△PMN的面積為y.
(1)△DEF的邊長(zhǎng)為
3
3

(2)當(dāng)x為何值時(shí),P點(diǎn)與M點(diǎn)重合?
(3)當(dāng)點(diǎn)P在DE上時(shí),x為何值時(shí),△PMN是直角三角形?
(4)求y與x的函數(shù)關(guān)系式,并說明當(dāng)P點(diǎn)在何處時(shí),△PMN的面積最大?
分析:(1)由題意知:當(dāng)F與C點(diǎn)重合時(shí)D正好在AB上,此時(shí)三角形ACD中,∠ACD=90°-60°=30°,而∠A=60°,因此∠ADC=90°,可在直角三角形BCD中,根據(jù)∠B的正弦值及BC的長(zhǎng)求出等邊三角形的邊長(zhǎng);
(2)根據(jù)∠BME=∠DEF-∠B=60°-30°=30°,得出∠BME=∠B,進(jìn)而得出BE=ME=x,DM=3-x,求出x即可;
(3)根據(jù)當(dāng)0≤x≤1時(shí),①當(dāng)x=0時(shí),△PMN是直角三角形;②過N作NP⊥DE于P,此時(shí)△PMN是直角三角形,求出x即可;
當(dāng)1<x≤
3
2
時(shí),△PMN是鈍角三角形,不可能是直角三角形.
(4)當(dāng)P與M重合時(shí),那么根據(jù)P的速度可表示出DM的長(zhǎng),而ME=BE為三角形平移的距離,據(jù)此可求出x=1.當(dāng)P到達(dá)E點(diǎn)時(shí),DP=DE,可求得此時(shí)x=
3
2

①當(dāng)P在DM之間時(shí),即0≤x≤1,MN的長(zhǎng)可在直角三角形DMN中,根據(jù)DM和∠DMN的余弦值求出,過P作PP1⊥MN于P1,那么PP1就是MN邊上的高,可在直角三角形MPP1中根據(jù)MP的長(zhǎng)和∠PMP1的正弦值求出(MP可根據(jù)DE-DP-ME來得出).據(jù)此可得出關(guān)于S,x函數(shù)關(guān)系式.
②當(dāng)P在EM之間時(shí),即1<x≤
3
2
,可過P作PP2⊥AB與P2,那么PP2的長(zhǎng)可在直角三角形PP2M中,根據(jù)PM的長(zhǎng)和∠BME的正弦值求出,進(jìn)而可根據(jù)三角形的面積公式求出S、x的函數(shù)關(guān)系式.
③當(dāng)P在EF上運(yùn)動(dòng)時(shí),即
3
2
≤x≤3,解法同上.
根據(jù)上述三種情況得出的函數(shù)的性質(zhì)及各自的自變量的取值范圍,可求得S的最大值及對(duì)應(yīng)的x的值.
解答:(1)解:當(dāng)F點(diǎn)與C點(diǎn)重合時(shí),如圖1所示:
∵△DEF為等邊三角形,
∴∠DFE=60°
∵∠B=30°,
∴∠BDF=90°
∴FD=
1
2
BC=3;
故答案為:3;

(2)解:∵∠BME=∠DEF-∠B=60°-30°=30°,
∴∠BME=∠B,
∴BE=ME=x,DM=3-x,
當(dāng)P點(diǎn)與M點(diǎn)重合時(shí),有2x+x=3,
∴x=1;

(3)當(dāng)0≤x≤1時(shí),
①當(dāng)x=0時(shí),△PMN是直角三角形;
②過N作NP⊥DE于P,此時(shí)△PMN是直角三角形.
∵M(jìn)P=DE-DP-ME=3-2x-x=3-3x,
MN=MD•cos30°=
3
2
(3-x)
,
MP=
3
2
MN
,
3-3x=
3
2
×
3
2
(3-x)
,
x=
1
3
,
當(dāng)1<x≤
3
2
時(shí),△PMN是鈍角三角形,不可能是直角三角形,
即當(dāng)x=0或
1
3
時(shí),△PMN是直角三角形.

(4)①當(dāng)0≤x≤1時(shí),過P點(diǎn)作PP1⊥AB,垂足為P1,
在Rt△PMP1中,PM=3-x-2x=3-3x,
PP1=
1
2
(3-3x)=
3
2
(1-x)

∴y與x的函數(shù)關(guān)系式為:y=
1
2
×
3
2
(3-x)×
3
2
(1-x),
=
3
3
8
(x2-4x+3),
②當(dāng)1<x≤
3
2
時(shí),過P點(diǎn)作PP2⊥AB,垂足為P2,
在Rt△PMP2中,PM=x-(3-2x)=3(x-1),
PP2=
3
2
(x-1)
,
∴y與x的函數(shù)關(guān)系式為:y=
1
2
×
3
2
(3-x)×
3
2
(x-1),
=-
3
3
8
(x2-4x+3);
③當(dāng)
3
2
<x≤3
時(shí),過P點(diǎn)作PP3⊥AB,垂足為P3
在Rt△PMP3中,PB=x+(2x-3)=3(x-1),
PP3=
3
2
(x-1)
,
∴y與x的函數(shù)關(guān)系式為:
y=
1
2
×
3
2
(3-x)×
3
2
(x-1),
=-
3
3
8
(x2-4x+3),
=-
3
3
8
(x-2)2+
3
3
8
,
∴當(dāng)x=2時(shí),y最大=
3
3
8
,
而當(dāng)P點(diǎn)在D點(diǎn)時(shí),x=0,
y=
1
2
×3×
3
2
×
3
2
=
9
3
8
,
9
8
3
3
8
3
,
∴當(dāng)P點(diǎn)在D點(diǎn)時(shí),△PMN的面積最大.
點(diǎn)評(píng):此題考查了等邊三角形和直角三角形的性質(zhì)、二次函數(shù)的應(yīng)用等知識(shí),綜合性強(qiáng),此題應(yīng)注意分類討論、數(shù)形結(jié)合的數(shù)學(xué)思想方法的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為( 。
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案