精英家教網(wǎng)已知:如圖,BD為ABCD的對角線,O為BD的中點,EF⊥BD于點O,與AD、BC分別交于點E、F.求證:DE=DF.
分析:可通過證明OE=OF,然后根據(jù)垂直平分線性質(zhì)來得出DE=DF,要證明OE=OF,證明三角形BOF和三角形DOE全等即可.
解答:證明:在平行四邊形ABCD中,AD∥BC,
∴∠OBF=∠ODE
∵O為BD的中點
∴OB=OD
在△BOF和△DOE中,
∠OBF=∠ODE
OB=OD
∠BOF=∠DOE

∴△BOF≌△DOE
∴OF=OE
∵EF⊥BD于點O
∴DE=DF.
點評:本題考查了平行四邊形的性質(zhì),垂直平分線的性質(zhì),全等三角形的判定等知識點,證明簡單的線段相等,一般是通過全等三角形來證明的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,BD為⊙O的直徑,BC為弦,A為BC弧中點,AF∥BC交DB的延長線于點F,AD交BC于精英家教網(wǎng)點E,AE=2,ED=4.
(1)求證:AF是⊙O的切線;
(2)求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、已知:如圖,BD為平行四邊形ABCD的對角線,O為BD的中點,EF⊥BD于點O,與AD,BC分別交于點E,F(xiàn).
求證:
(1)△BOF≌△DOE.
(2)DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,BD為⊙O的直徑,點A是劣弧BC的中點,AD交BC于點E,連接AB.
(1)求證:AB2=AE•AD;
(2)過點D作⊙O的切線,與BC的延長線交于點F,若AE=2,ED=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,BD為平行四邊形ABCD的對角線,O為BD的中點,EF⊥BD于點O,與AD、BC分別交于點E、F.試判斷四邊形BFDE的形狀,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案