【題目】已知:b是最小的正整數(shù),且a、b滿足(c﹣6)2+|a+b|=0,請回答問題
(1)請直接寫出a、b、c的值.a= ,b= ,c=
(2)a、b、c所對應(yīng)的點分別為A、B、C,點P為一動點,其對應(yīng)的數(shù)為x,點P在A、B之間運動時,請化簡式子:|x+1|﹣|x﹣1|﹣2|x+5|(請寫出化簡過程)
(3)在(1)(2)的條件下,點A、B、C開始在數(shù)軸上運動,若點A以每秒n(n>0)個單位長度的速度向左運動,同時,點B和點C分別以每秒2n個單位長度和5n個單位長度的速度向右運動,假設(shè)經(jīng)過t秒鐘過后,若點B與點C之間的距離表示為BC,點A與點B之間的距離表示為AB.請問:BC﹣AB的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值.
【答案】(1)﹣1,1,6;(2)-10;(3)BC﹣AB的值不變,BC﹣AB=4
【解析】試題分析:(1)根據(jù)最小的正整數(shù)是1,推出 再利用非負數(shù)的性質(zhì)求出即可.
(2)首先確定的范圍,再化簡絕對值即可.
(3)的值不變.根據(jù)題意用 表示出即可解決問題.
試題解析:(1)∵b是最小的正整數(shù),
∴b=1,
∴c=6,a=1,b=1,
故答案為1,1,6.
(2)由題意1<x<1,
∴|x+1||x1|2|x+5|=x+1+x12x10=10.
(3)不變,由題意BC=5+5nt2nt=5+3nt,AB=nt+1+2nt=1+3nt,
∴BCAB=(5+3nt)(1+3nt)=4,
∴BCAB的值不變,BCAB=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象過A(2,0), B(0,﹣1)和C(4,5)三點.
(1)求二次函數(shù)的解析式;
(2)設(shè)二次函數(shù)的圖象與x軸的另一個交點為D,求點D的坐標;
(3)在同一坐標系中畫出直線y=x+1,并寫出當(dāng)x在什么范圍內(nèi)時,一次函數(shù)的值大于二次函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)計算:﹣32÷(﹣3)2+3×(﹣2)+|﹣4|
(2)計算:
(3)化簡:(5a2+2a﹣1)﹣4[3﹣2(4a+a2)]
(4)化簡:3x2﹣[7x﹣(4x﹣3)﹣2x2]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E、F分別是ABCD的邊BC、AD上的點,且BE=DF.
(1)試判斷四邊形AECF的形狀;
(2)若AE=BE,∠BAC=90°,求證:四邊形AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一頂點重合的兩個大小完全相同的邊長為3的正方形ABCD和正方形AB′C′D′,如圖所示,∠DAD′=45°,邊BC與D′C′交于點O,則四邊形ABOD′的周長是( 。
A. 6 B. 6 C. 3 D. 3+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張先生準備在沙坪壩購買一套小戶型商品房,他去某樓盤了解情況得知,該戶型商品房的單價是12000元/m2,面積如圖所示(單位:米,臥室的寬為a米,衛(wèi)生間的寬為x米),
(1) 用含a和x的式子表示該戶型的面積
(2) 售房部為張先生提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價是12 000元/m2,其中廚房只算的面積;
方案二:整套房按原銷售總金額的9折出售,
若張先生購買的戶型a=3,且分別用兩種方案購房金額相等,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片中,,,折疊紙片使點落在邊上的處,折痕為.過點作交于,連接.
(1)求證:四邊形為菱形;
(2)當(dāng)點在邊上移動時,折痕的端點,也隨之移動.
①當(dāng)點與點重合時(如圖),求菱形的邊長;
②若限定,分別在邊,上移動,求出點在邊上移動的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,點B在點P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達式.
(3)直接寫出y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2014四川資陽)如圖①,已知直線l1∥l2,線段AB在直線l1上,BC垂直于l1交l2于點C,且AB=BC,P是線段BC上異于兩端點的一點,過點P的直線分別交l2,l1于點D,E(點A,E位于點B的兩側(cè),滿足BP=BE,連接AP,CE.
(1)求證:△ABP≌△CBE.
(2)連接AD、BD,BD與AP相交于點F,如圖②.
①當(dāng)時,求證:AP⊥BD;
②當(dāng)(n>1)時,設(shè)△PAD的面積為S1,△PCE的面積為S2,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com