如圖,甲、乙兩漁船同時(shí)從港口出發(fā)外出捕魚,乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為    海里/小時(shí).
【答案】分析:根據(jù)題意畫圖,過O向AB作垂線,根據(jù)特殊角的三角函數(shù)值求得AC、BC的值,從而求得AB的值.根據(jù)追及問題的求法求甲船追趕乙船的速度.
解答:解:如圖:乙沿南偏東30°方向航行則∠DOB=30°,甲沿南偏西75°方向航行,則∠AOD=75°,
當(dāng)航行1小時(shí)后甲沿南偏東60°方向追趕乙船,則∠2=90°-60°=30°.
∵∠3=∠AOD=75°,
∴∠1=90°-75°=15°,
故∠1+∠2=15°+30°=45°.
過O向AB作垂線,則∠AOC=90°-∠1-∠2=90°-15°-30°=45°,
∵OA=10,∠OAB=∠AOC=45°,
∴OC=AC=OA•sin45°=10×=10.
在Rt△OBC中,∠BOC=∠AOD+∠BOD-∠AOC=75°+30°-45°=60°,
∴BC=OC•tan60°=10
∴AB=AC+BC=10+10
因?yàn)镺C=10海里,∠B=30°,所以O(shè)B=2OC=2×10=20,
乙船從O到B所用時(shí)間為20÷10=2小時(shí),
由于甲從O到A所用時(shí)間為1小時(shí),則從A到B所用時(shí)間為2-1=1小時(shí),
甲船追趕乙船的速度為10+10海里/小時(shí).
點(diǎn)評:此題是一道方向角問題,結(jié)合航海中的實(shí)際問題,將解直角三角形的相關(guān)知識(shí)有機(jī)結(jié)合,體現(xiàn)了數(shù)學(xué)應(yīng)用于實(shí)際生活的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,甲、乙兩漁船同時(shí)從港口出發(fā)外出捕魚,乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10
2
海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為
 
海里/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第21章《解直角三角形》中考題集(28):21.5 應(yīng)用舉例(解析版) 題型:填空題

如圖,甲、乙兩漁船同時(shí)從港口出發(fā)外出捕魚,乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為    海里/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《解直角三角形》中考題集(23):25.3 解直角三角形(解析版) 題型:填空題

如圖,甲、乙兩漁船同時(shí)從港口出發(fā)外出捕魚,乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為    海里/小時(shí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第25章《解直角三角形》中考題集(23):25.3 解直角三角形及其應(yīng)用(解析版) 題型:填空題

如圖,甲、乙兩漁船同時(shí)從港口出發(fā)外出捕魚,乙沿南偏東30°方向以每小時(shí)10海里的速度航行,甲沿南偏西75°方向以每小時(shí)10海里的速度航行,當(dāng)航行1小時(shí)后,甲在A處發(fā)現(xiàn)自己的漁具掉在乙船上,于是迅速改變航向和速度,仍以勻速沿南偏東60°方向追趕乙船,正好在B處追上.則甲船追趕乙船的速度為    海里/小時(shí).

查看答案和解析>>

同步練習(xí)冊答案