【題目】如圖,點(diǎn)是直線與反比例函數(shù)為常數(shù))的圖象的交點(diǎn).過(guò)點(diǎn)軸的垂線,垂足為,且

1)求點(diǎn)的坐標(biāo)及的值;

2)已知點(diǎn),過(guò)點(diǎn)作平行于軸的直線,交直線于點(diǎn),交反比例函數(shù)為常數(shù))的圖象于點(diǎn),交垂線于點(diǎn).若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

【答案】1A2,4);m=9;(26x1+x2+x3≤7

【解析】

1)由點(diǎn)A在正比例函數(shù)y=2x的圖象上,可得點(diǎn)A的坐標(biāo)為(24),再根據(jù)點(diǎn)A在反比例函數(shù)的圖象上,即可得出m的值;
2)依據(jù)x2x3x1,結(jié)合函數(shù)的圖象,即可寫出x1+x2+x3的取值范圍.

解:(1)由題意得,可知點(diǎn)A的橫坐標(biāo)是2,
由點(diǎn)A在正比例函數(shù)y=2x的圖象上,
∴點(diǎn)A的坐標(biāo)為(24),
又∵點(diǎn)A在反比例函數(shù)的圖象上,
4,

m=9;

2)∵過(guò)點(diǎn)P0,n)作平行于x軸的直線,交直線y=2x于點(diǎn)Cx1y1),交反比例函數(shù)m為常數(shù))的圖象于點(diǎn)Dx2y2),交垂線AB于點(diǎn)Ex3,y3),而x2x3x1,
4n≤8
∵當(dāng)n=4時(shí),x1+x2+x3=2+2+2=6;當(dāng)n=8時(shí),x1+x2+x3=4+1+2=7
6x1+x2+x3≤7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,甲、乙兩名大學(xué)生騎自行車去距學(xué)校6000米的凈月潭公園.兩人同時(shí)從學(xué)校出發(fā),以a米/分的速度勻速行駛出發(fā)4.5分鐘時(shí),甲同學(xué)發(fā)現(xiàn)忘記帶學(xué)生證,以1.5a米/分的速度按原路返回學(xué)校,取完學(xué)生證(在學(xué)校取學(xué)生證所用時(shí)間忽略不計(jì)),繼續(xù)以返回時(shí)的速度追趕乙.甲追上乙后,兩人以相同的速度前往凈月潭.乙騎自行車的速度始終不變.設(shè)甲、乙兩名大學(xué)生距學(xué)校的路程為s(米),乙同學(xué)行駛的時(shí)間為t(分),s與t之間的函數(shù)圖象如圖所示.

(1)求a、b的值.

(2)求甲追上乙時(shí),距學(xué)校的路程.

(3)當(dāng)兩人相距500米時(shí),直接寫出t的值是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,曲線l是由函數(shù)y在第一象限內(nèi)的圖象繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到的,且過(guò)點(diǎn)A m,6),B (﹣6,n),則OAB的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為等腰直角三角形,斜邊邊在負(fù)半軸上,一次函數(shù)交于、兩點(diǎn),與軸交于點(diǎn),反比例函數(shù)的圖象的一支過(guò)點(diǎn),若,則的值為(

A.B.C.-3D.-4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖甲所示,在平面直角坐標(biāo)系中,拋物線軸交于兩點(diǎn),與軸交于點(diǎn),點(diǎn)為該拋物線的頂點(diǎn).

1)如圖甲,點(diǎn)為拋物線上,兩點(diǎn)間的一動(dòng)點(diǎn),連接,,當(dāng)面積最大時(shí),在對(duì)稱軸上有一動(dòng)點(diǎn),如圖乙所示,過(guò)點(diǎn)軸交軸于點(diǎn),連接,,求的最小值,并求出此時(shí)點(diǎn)的坐標(biāo);

2)如圖丙所示,將繞著點(diǎn)旋轉(zhuǎn),得到,在旋轉(zhuǎn)過(guò)程中,是否存在某個(gè)時(shí)刻使以點(diǎn)為頂點(diǎn)的三角形為以為腰的等腰三角形,如果存在,請(qǐng)直接寫出此時(shí)點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們規(guī)定平面內(nèi)點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最小值稱為該點(diǎn)到這個(gè)圖形的最小距離d,點(diǎn)A到圖形G上各個(gè)點(diǎn)的距離的最大值稱為該點(diǎn)到這個(gè)圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D-d

1如圖1在平面直角坐標(biāo)系xOy,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度

A1,0的距離跨度______________;

B- 的距離跨度____________;

C-3-2的距離跨度____________;

根據(jù)中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是______________

2如圖2在平面直角坐標(biāo)系xOy,圖形G2為以D-1,0為圓心,2為半徑的圓,直線y=kx-1上存在到G2的距離跨度為2的點(diǎn),k的取值范圍

3如圖3在平面直角坐標(biāo)系xOy,射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運(yùn)動(dòng),若射線OP上存在點(diǎn)到E的距離跨度為2求出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在練習(xí)操控航拍無(wú)人機(jī),該型號(hào)無(wú)人機(jī)在上升和下落時(shí)的速度相同,設(shè)無(wú)人機(jī)的飛行高度為y(米),小明操控?zé)o人飛機(jī)的時(shí)間為x(分),yx之間的函數(shù)圖象如圖所示.

(1)無(wú)人機(jī)上升的速度為   /分,無(wú)人機(jī)在40米的高度上飛行了   分.

(2)求無(wú)人機(jī)下落過(guò)程中,yx之間的函數(shù)關(guān)系式.

(3)求無(wú)人機(jī)距地面的高度為50米時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形OABC中,ABOC,BCx軸于C,A1,-1),B3-1),動(dòng)點(diǎn)PO點(diǎn)出發(fā),沿x軸正方向以3個(gè)單位/秒的速度運(yùn)動(dòng).過(guò)PPQOAQ.設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(0 < t < ),ΔOPQ與四邊形OABC重疊的面積為S

1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線的解析式并確定頂點(diǎn)M的坐標(biāo);

2)用含t的代數(shù)式表示PQ兩點(diǎn)的坐標(biāo);

3)將ΔOPQP點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,是否存在t,使得ΔOPQ的頂點(diǎn)OQ落在拋物線上?若存在,直接寫出t的值;若不存在,請(qǐng)說(shuō)明理由;

4)求St的函數(shù)解析式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩地相距,甲、乙兩人都由地去地,甲騎自行車,平均速度為;乙乘汽車,平均速度為,且比甲晚出發(fā).設(shè)甲的騎行時(shí)間為

1)根據(jù)題意,填寫表格:

時(shí)間

地的距離(

0.5

1.8

甲與地的距離

5

20

乙與地的距離

0

12

2)設(shè)甲,乙兩人與地的距離為.寫出,關(guān)于的表達(dá)式;

3)設(shè)甲,乙兩人之間的距離為,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案