【題目】如圖,在矩形ABCD中,BD⊥AC,對角線AC所在的直線上有兩點M、N,使∠MBN=135°,若AD=4,AM=3,則CN的長是_____.
【答案】
【解析】
先證明四邊形ABCD是正方形,可得∠ABC=90°,∠MBN=135°,所以∠ABM+∠CBN=45°,根據(jù)∠ACB=45°,由三角形外角的性質(zhì)得到∠CBN+∠N=45°,所以∠ABM=∠N 同理可得∠BMA=∠CBN,所以△BMA~△NBC,根據(jù)三角形相似的性質(zhì)可求得AMCN=BCAB,則答案可求.
解:∵矩形ABCD中,BD⊥AC,
∴四邊形ABCD是正方形,
∴AD=BC=AB=4,∠ABC=90°,
∵∠MBN=135°,
∴∠ABM+∠CBN=45°,
∵∠ACB=∠CBN+∠N=45°,
∴∠ABM=∠N,同理∠BMA=∠CBN,
∴△BMA∽△NBC,
∴
∴,
∴CN=,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD和正方形CGEF,且D點在CF邊上,M為AE中點,連接MD、MF,
(1)如圖1,請直接給出線段MD、MF的數(shù)量及位置關(guān)系是 ;
(2)如圖2,把正方形CGEF繞點C順時針旋轉(zhuǎn),則(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請給出你的結(jié)論并證明;
(3)若將正方形CGEF繞點C順時針旋轉(zhuǎn)30°時,CF邊恰好平分線段AE,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等腰三角形,頂角∠BAC=(<600),D是BC邊上的一點,連接AD,線段AD繞點A順時針旋轉(zhuǎn)到AE,過點E作BC的平行線,交AB于點F,連接DE、BE、DF
(1)求證:BE=CD
(2)若AD⊥BC,試判斷四邊形BDFE的形狀,并給出證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某批發(fā)商以每件50元的價格購進800件T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預(yù)計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據(jù)市場調(diào)查,單價每降低1元,可多售出10件,但最低單價應(yīng)高于購進的價格;第二個月結(jié)束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元,設(shè)第二個月單價降低元.
(1)填表:(不需化簡)
(2)如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應(yīng)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)設(shè)計了一款工藝品,每件的成本是50元,為了合理定價,投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.
求出每天的銷售利潤元與銷售單價元之間的函數(shù)關(guān)系式;
求出銷售單價為多少元時,每天的銷售利潤最大?最大利潤是多少?
如果該企業(yè)要使每天的銷售利潤不低于4000元,且每天的總成本不超過7000元,那么銷售單價應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,夜晚,小華利用路燈A測量建筑物GF的高度,他在點D處豎立了一根木桿CD,測得木桿CD的影長DE=1.5m,AB⊥EG,CD⊥EG,GF⊥EG.
(1)在圖中畫出表示建筑物GF影子的線段GH;
(2)已知木桿的高CD=2m,建筑物GF的影子GH=7.8m,木桿CD與路燈桿AB之間的距離BD=5.85m,路燈桿AB與建筑物GF之間的距離BG=6.9m,請你根據(jù)題中提供的相關(guān)信息,求出建筑物GF的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的四個頂點都在⊙O上,E是⊙O上的一點.
(1)如圖①,若點E在上,F是DE上的一點,DF=BE.求證:△ADF≌△ABE;
(2)在(1)的條件下,小明還發(fā)現(xiàn)線段DE、BE、AE之間滿足等量關(guān)系:DE﹣BE=AE.請你說明理由;
(3)如圖②,若點E在上.寫出線段DE、BE、AE之間的等量關(guān)系.(不必證明)
第26題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象經(jīng)過點A(4,b),過點A作AB⊥x軸于點B,△AOB的面積為2.
(1)求k和b的值;
(2)若一次函數(shù)y=ax﹣3的圖象經(jīng)過點A,求這個一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點中心對稱,已知A, D1,D三點的坐標(biāo)分別是(0,4),(0,3),(0,2).
(1)對稱中心的坐標(biāo);
(2)寫出頂點B, C, B1 , C1的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com