【題目】如圖,在ABC中,AB=AC,BGACGDEABE,DFACF

1)在圖(1)中,DBC邊上的中點,判斷DE+DFBG的關系,并說明理由.

2)在圖(2)中,D是線段BC上的任意一點,DE+DFBG的關系是否仍然成立?如果成立,證明你的結論;如果不成立,請說明理由.

3)在圖(3)中,D是線段BC延長線上的點,探究DE、DFBG的關系.(不要求證明,直接寫出結果)

【答案】(1)結論:DE+DF=BG,理由見解析;(2)見解析

【解析】試題分析: 連接根據即可求出.

根據即可求出.

試題解析:1)結論:

理由:連結AD.則

2)證明:如圖2,連結AD

3

證明:如圖3,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B是線段AD上一動點,沿ADA以 2 cm/s的速度往返運動1次,C是線段BD的中點,AD=10 cm,設點B的運動時間為t秒(0≤t≤10).

(1)當t=2時,

AB=____cm;

②求線段CD的長度;

(2)用含t的代數(shù)式表示運動過程中AB的長;

(3)在運動過程中,若AB的中點為E,則EC的長是否變化?若不變,求出EC的長;若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九年級學生開展測量物體高度的實踐活動,他們要測量學校一幢教學樓的高度,如圖,他們先在點C測得教學樓AB的頂點A的仰角為30°,然后向教學樓前進20米到達點D,又測得點A的仰角為45°,請根據這些數(shù)據,求這幢教學樓的高度.(最后結果精確到1米,參考數(shù)據 ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司擬為貧困山區(qū)建一所希望小學,甲、乙兩個工程隊提交了投標方案,若獨立完成該項目,則甲工程隊所用時間是乙工程隊的1.5倍;若甲、乙兩隊合作完成該項目,則共需72天.

(1)甲、乙兩隊單獨完成建校工程各需多少天?

(2)若由甲工程隊單獨施工,平均每天的費用為0.8萬元,為了縮短工期,該公司選擇了乙工程隊,但要求其施工的總費用不能超過甲工程隊,求乙工程隊平均每天的施工費用最多為多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B在反比例函數(shù)y= 的圖象上,過點A,B作x軸的垂線,垂足分別是M,N,射線AB交x軸于點C,若OM=MN=NC,四邊形AMNB的面積是3,則k的值為(

A.2
B.4
C.﹣2
D.﹣4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD∥BC,AF平分∠BAD交BC于點F,BE平分∠ABC交AD于點E.求證:

(1)△ABF是等腰三角形;
(2)四邊形ABFE是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是邊長為4的等邊三角形,BC在x軸上,點D為BC的中點,點A在第一象限內,AB與y軸的正半軸交與點E,已知點B(﹣1,0).
(1)點A的坐標: , 點E的坐標:;
(2)若二次函數(shù)y=﹣ x2+bx+c過點A、E,求此二次函數(shù)的解析式;
(3)P是AC上的一個動點(P與點A、C不重合)連結PB、PD,設l是△PBD的周長,當l取最小值時,求點P的坐標及l(fā)的最小值并判斷此時點P是否在(2)中所求的拋物線上,請充分說明你的判斷理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2 的正方形ABCD中,點E為AD邊的中點,將△ABE沿BE翻折,使點A落在點A′處,作射線EA′,交BC的延長線于點F,則CF=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長交AD于E,交BA的延長線于點F.

(1)求證:△APD≌△CPD;
(2)求證:△APE∽△FPA;
(3)猜想:線段PC,PE,PF之間存在什么關系?并說明理由.

查看答案和解析>>

同步練習冊答案