如圖,已知△ABC,延長AC.
(1)完成作圖:用直尺和圓規(guī)作BC的垂直平分線交BC于G,作∠BAC的角平分線AD交BC的垂直平分線于D(保留作圖痕跡,不寫作法);
(2)若在前面作圖的基礎(chǔ)上再作DE⊥AB于E,DF⊥AC于F,證明:BE=CF.
分析:(1)根據(jù)角平分線以及線段垂直平分線的作法,分別作出即可;
(2)利用垂直平分線的作法以及全等三角形的判定得出即可.
解答:解:(1)如圖所示:


(2)證明:連接DB、DC
∵DG垂直平分BC,∴DB=DC,
∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,
∴DE=DF,
∴Rt△BED≌△RtCFD,
∴BE=CF.
點(diǎn)評:此題主要考查了基本作圖中角平分線以及線段垂直平分線作法以及全等三角形的判定等知識,正確掌握線段垂直平分線的性質(zhì)是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的三個頂點(diǎn)分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請?jiān)趫D中作出△ABC關(guān)于直線x=-1的軸對稱圖形△DEF(A、B、C的對應(yīng)點(diǎn)分別是D、E、F),并直接寫出D、E、F的坐標(biāo);
(2)求四邊形ABED的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知△ABC和△CDE均為等邊三角形,且點(diǎn)B、C、D在同一條直線上,連接AD、BE,交CE和AC分別于G、H點(diǎn),連接GH.
(1)請說出AD=BE的理由;
(2)試說出△BCH≌△ACG的理由;
(3)試猜想:△CGH是什么特殊的三角形,并加以說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠ACB=90°,AC=BC,點(diǎn)E、F在AB上,∠ECF=45°.
(1)求證:△ACF∽△BEC;
(2)設(shè)△ABC的面積為S,求證:AF•BE=2S;
(3)試判斷以線段AE、EF、FB為邊的三角形的形狀并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、(1)已知線段a,h,用直尺和圓規(guī)作等腰三角形ABC,底邊BC=a,BC邊上的高為h(要求尺規(guī)作圖,不寫作法和證明)
(2)如圖,已知△ABC,請作出△ABC關(guān)于X軸對稱的圖形.并寫出A、B、C關(guān)于X軸對稱的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知△ABC是銳角三角形,且∠A=50°,高BE、CF相交于點(diǎn)O,求∠BOC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案