【題目】如圖,在△ABC中,ABAC5,BC8,點D是邊BC上一點(點D不與點B,C重合),將△ACD沿AD翻折,點C的對應點是E,AEBC于點F,若DEAB,則DF的長為___

【答案】.

【解析】

由等腰三角形的性質(zhì)和平行線的性質(zhì)得出∠B=∠C,∠BAF=∠E,∠B=∠EDF,由折疊的性質(zhì)得:∠E=∠C,AEAC5EDCD,得出∠B=∠BAF=∠E=∠EDF,證出AFBF,EFDF,得出BDAFAC5EDCDBCBD3,由平行線得出EDF∽△ABF,得出比例式,即可得出結果.

ABAC5,

∴∠BC

DEAB,

∴∠BAFE,BEDF,

由折疊的性質(zhì)得:EC,AEAC5EDCD,

∴∠BBAFEEDF

AFBF,EFDF,

BDAFAC5

EDCDBCBD3,

DEAB,

∴△EDF∽△ABF

,即

解得:DF;

故答案為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】海中有一個小島P,它的周圍18海里內(nèi)有暗礁,漁船跟蹤魚群由西向東航行,在點A測得小島P在北偏東60°方向上,航行12海里到達B點,這時測得小島P在北偏東45°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁危險?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)的圖象交于Am,6),B3,n)兩點.

1)求一次函數(shù)的解析式;

2)根據(jù)圖象直接寫出x的取值范圍;

3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m,橋洞與水面

的最大距離是5m

1經(jīng)過討論同學們得出三種建立平面直角坐標系的方案如下圖

你選擇的方案是_____填方案一,方案二,或方案三),B點坐標是______,求出你所選方案中的拋物線的表達式

2因為上游水庫泄洪,水面寬度變?yōu)?/span>6m,求水面上漲的高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,雙曲線lyx0)過點A(a,b)B(2,1)0a2);過點AACx軸,垂足為C

1)求l的解析式;

2)當△ABC的面積為2時,求點A的坐標;

3)點Pl上一段曲線AB(包括A,B兩點)的動點,直線l1ymx+1過點P;在(2)的條件下,若ymx+1具有yx增大而增大的特點,請直接寫出m的取值范圍.(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形的頂點軸的正半軸上,.對角線相交于點,反比例函數(shù)的圖像經(jīng)過點,分別與交于點.

1)若,求的值;

2)連接,若,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)有一個△ABCO為平面內(nèi)的一點,延長AOA,使OA′=OA,延長BOB,使OB′=OB,延長CO到從C,使OC′=OC,得到△ABC,問:△ABC與△ABC是否全等?這兩個三角形的對應邊是否平行?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,點E為邊CD的中點,若菱形ABCD的周長為16,BAD=60°,OCE的面積是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為4.

(1)當m=4,n=20時.

①若點P的縱坐標為2,求直線AB的函數(shù)表達式.

②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.

(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關系;若不能,試說明理由.

查看答案和解析>>

同步練習冊答案