如圖,△ABC中,AB=AC,在AB上取一點(diǎn)E,在AC的延長(zhǎng)線上取一點(diǎn)F,使CF=BE,連接EF,交BC于點(diǎn)D。求證DE=DF.

 

 

【答案】

證明見(jiàn)解析

【解析】

試題分析:作FH∥AB交BC延長(zhǎng)線于H,構(gòu)造全等三角形:△DBE和△FHE,由平行線得出兩對(duì)內(nèi)錯(cuò)角相等,只需要再證一組邊對(duì)應(yīng)相等,根據(jù)已知條件,以及所作平行線,可證出HF=BD,三角形全等可證.

試題解析:

證明:作FH∥AB交BC延長(zhǎng)線于H,

∵FH∥AB,

∴∠FHC=∠B.

又∵AB=AC,

∴∠B=∠ACB.

又∠ACB=∠FCH,

∴∠FHE=∠FCH.

∴CF=HF.

又∵BD=CF,

∴HF=BD.

又∵FH∥AB,

∴∠BDE=∠HFE,∠DBE=∠FHE.

∴△DBE≌△FHE(ASA).

∴DE=EF.

考點(diǎn):1.等腰三角形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案