【題目】如圖,正方形邊長(zhǎng)為,軸,軸,頂點(diǎn)恰好落在雙曲線上,邊、分別交雙曲線于點(diǎn)、,若線段過原點(diǎn),則的面積為( )
A. 1 B. C. D.
【答案】D
【解析】
根據(jù)反比例函數(shù)的對(duì)稱性可得點(diǎn)A、E關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,然后求出點(diǎn)A的縱坐標(biāo)為-1,再根據(jù)反比例函數(shù)的解析式求出點(diǎn)A的橫坐標(biāo),從而得到點(diǎn)A、E的坐標(biāo),然后求出點(diǎn)F的橫坐標(biāo),再代入反比例函數(shù)解析式求出點(diǎn)F的縱坐標(biāo),再求出DE、EC、CF、FB的長(zhǎng),然后利用△AEF所在的正方形的面積減去四周三個(gè)直角三角形的面積列式計(jì)算即可得解.
∵線段AE過原點(diǎn),
∴點(diǎn)A、E關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,
∵正方形ABCD的邊長(zhǎng)為2,
∴點(diǎn)A的縱坐標(biāo)為-1,
代入反比例函數(shù)解析式得,=-1,
解得x=-,
∴點(diǎn)A(-,-1),E(,1),
∴點(diǎn)F的橫坐標(biāo)為2-=,
代入反比例函數(shù)解析式得y==,
∴點(diǎn)F(,),
∴DE=+=1,EC=2-1=1,CF=1-=,F(xiàn)B=1+=,
△AEF的面積=22-×2×1-×1×-×2×=4-1--=.
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.
(1)求證:BC是∠ABE的平分線;
(2)若DC=8,⊙O的半徑OA=6,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內(nèi))變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反例關(guān)系,且在溫度達(dá)到30℃時(shí),電阻下降到最小值;隨后電阻承溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求R和t之間的關(guān)系式;
(2)家用電滅蚊器在使用過程中,溫度在什么范圍內(nèi)時(shí),發(fā)熱材料的電阻不超過4kΩ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD為矩形,AD=20cm、AB=10cm.M點(diǎn)從D到A,P點(diǎn)從B到C,兩點(diǎn)的速度都為2cm/s;N點(diǎn)從A到B,Q點(diǎn)從C到D,兩點(diǎn)的速度都為1cm/s.若四個(gè)點(diǎn)同時(shí)出發(fā).
(1)判斷四邊形MNPQ的形狀.
(2)四邊形MNPQ能為菱形嗎?若能,請(qǐng)求出此時(shí)運(yùn)動(dòng)的時(shí)間;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為美化校園環(huán)境,某校計(jì)劃在一塊長(zhǎng)為60米,寬為40米的長(zhǎng)方形空地上修建一個(gè)長(zhǎng)方形花圃,并將花圃四周余下的空地修建成同樣寬的通道,設(shè)通道寬為米.
(1)如果通道所占面積是整個(gè)長(zhǎng)方形空地面積的,求出此時(shí)通道的寬;
(2)能否設(shè)計(jì)出符合題目要求,且長(zhǎng)方形花圃的形狀與原長(zhǎng)方形空地的形狀相似的花圃?若能,求出此時(shí)通道的寬;若不能,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】善于不斷改進(jìn)學(xué)習(xí)方法的小迪發(fā)現(xiàn),對(duì)解題進(jìn)行回顧反思,學(xué)習(xí)效果更好.某一天小迪有20分鐘時(shí)間可用于學(xué)習(xí).假設(shè)小迪用于解題的時(shí)間(單位:分鐘)與學(xué)習(xí)收益量的關(guān)系如圖1所示,用于回顧反思的時(shí)間(單位:分鐘)與學(xué)習(xí)收益的關(guān)系如圖2所示(其中是拋物線的一部分,為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.
(1)求小迪解題的學(xué)習(xí)收益量與用于解題的時(shí)間之間的函數(shù)關(guān)系式;
(2)求小迪回顧反思的學(xué)習(xí)收益量與用于回顧反思的時(shí)間的函數(shù)關(guān)系式;
(3)問小迪如何分配解題和回顧反思的時(shí)間,才能使這20分鐘的學(xué)習(xí)收益總量最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=36°時(shí),求∠DEF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D,E是△ABC內(nèi)的兩點(diǎn),AD平分∠BAC,∠EBC=∠E=60°.若BE=9cm,DE=3cm,則BC的長(zhǎng)為 ( 。
A.12cmB.11cmC.9cmD.6cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:連接多邊形的對(duì)角線或在多邊形邊上(非頂點(diǎn))取一點(diǎn)或在多邊形內(nèi)部取一點(diǎn)與多邊形各頂點(diǎn)的連線,能將多邊形分割成若干個(gè)小三角形,圖1給出了四邊形的具體分割方法,分別將四邊形分割成了個(gè)、個(gè)、個(gè)小三角形.
(1)請(qǐng)你按照上述方法將圖2中的六邊形進(jìn)行分割,并寫出每種方法所得到的小三角形的個(gè)數(shù)為 個(gè)、 個(gè), 個(gè)
(2)當(dāng)多邊形為邊形時(shí),按照上述方法進(jìn)行分割,寫出每種分法所得到的小三角形的個(gè)數(shù)為 個(gè)、 個(gè), 個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com