觀察下列各式的計算:
1
1+
2
=
2
-1
(1+
2
)(
2
)-1
=
2
-1;
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
;
1
3
+
4
=
4
-
3
(
3
+
4
)(
4
-
3
)
=
4
-
3
;

從計算結(jié)果中找出規(guī)律及方法,并利用這一規(guī)律及方法計算:
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
n-1
+
n
+
1
n
+
n+1
(n>1,且n是整數(shù)).
分析:根據(jù)已知得出
2
-1+
3
-
2
+
4
-
3
+…+
n+1
-
n
,合并后求出即可.
解答:解:原式=
2
-1+
3
-
2
+
4
-
3
+…+
n+1
-
n

=
n+1
-1.
點評:本題考查了分母有理化和二次根式的加減的應(yīng)用,主要考查學(xué)生的閱讀能力和計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濱州)觀察下列各式的計算過程:
5×5=0×1×100+25,
15×15=1×2×100+25,
25×25=2×3×100+25,
35×35=3×4×100+25,

請猜測,第n個算式(n為正整數(shù))應(yīng)表示為
5(2n-1)×5(2n-1)=100n(n-1)+25
5(2n-1)×5(2n-1)=100n(n-1)+25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式的計算結(jié)果
1-
1
22
=1-
1
4
=
3
4
=
1
2
×
3
2
        
1-
1
32
=1-
1
9
=
8
9
=
2
3
×
4
3

1-
1
42
=1-
1
16
=
15
16
=
3
4
×
5
4
      
1-
1
52
=1-
1
25
=
24
25
=
4
5
×
6
5


(1)用你發(fā)現(xiàn)的規(guī)律填寫下列式子的結(jié)果:
1-
1
62
=
5
6
5
6
×
7
6
7
6
          
1-
1
1002
=
99
100
99
100
×
101
100
101
100

(2)用你發(fā)現(xiàn)的規(guī)律計算:
(1-
1
22
)×(1-
1
32
)×(1-
1
42
)×…×(1-
1
20122
)×(1-
1
20132
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察下列各式的計算結(jié)果與相乘的兩個多項式之間的關(guān)系:
(x+1)(x2-x+1)=x3+1;  
(x+2)(x2-2x+4)=x3+8;  
(x+3)(x2-3x+9)=x3+27.
請根據(jù)以上規(guī)律填空:(x+y)(x2-xy+y2)=
x3+y3
x3+y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江蘭溪柏社中學(xué)七年級上單元練習(xí)(一)數(shù)學(xué)試卷(解析版) 題型:解答題

觀察下列各式的計算結(jié)果

(1)   用你發(fā)現(xiàn)的規(guī)律填寫下列式子的結(jié)果:

 

查看答案和解析>>

同步練習(xí)冊答案