分析 先由已知條件得到a2=1-3a,b2=1-3b,把它們代入(a2+5a+1)•(b2+5b+1)中整理得到原式=4(ab+a+b+1),由于a2+3a-1=0,b2+3b-1=0,于是a、b可看作方程x2+3x-1=0的兩根,根據(jù)根與系數(shù)的關(guān)系得到a+b=-3,ab=-1,然后利用整體代入的方法計(jì)算原式的值.
解答 解:∵a2+3a=1,b2+3b=1,
∴a2=1-3a,b2=1-3b,
∴(a2+5a+1)•(b2+5b+1)=(1-3a+5a+1)(1-3b+5b+1)=(2a+2)(2b+2)=4(ab+a+b+1),
∵a2+3a-1=0,b2+3b-1=0,
∴a、b可看作方程x2+3x-1=0的兩根,
∴a+b=-3,ab=-1,
∴(a2+5a+1)•(b2+5b+1)=4(-1-3+1)=-12.
故答案為-12.
點(diǎn)評(píng) 本題考查了根與系數(shù)的關(guān)系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根時(shí),x1+x2=$\frac{a}$,x1x2=$\frac{c}{a}$.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | $\frac{1}{3}$ | C. | -3 | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com