【題目】推理填空
已知,如圖,∥,∥,平分交于,平分交于,求證:∥
證明:∵∥
∴__________(兩直線平行,同旁內(nèi)角互補(bǔ))
∵∥
∴__________(兩直線平行,同旁內(nèi)角互補(bǔ))
∴_____________=________________
又∵平分
∴____________(角平分線定義)
又∵平分
∴____________(角平分線定義)
∴_____________=________________
∵∥
∴___________(兩直線平行,內(nèi)錯(cuò)角相等)
∴_____________=________________(等量代換)
∴∥(同位角相等,兩直線平行)
【答案】見解析.
【解析】
根據(jù)平行線的性質(zhì)得出∠A+∠ABC=180°,∠A+∠ADC=180°,求出∠ABC=∠ADC,根據(jù)角平分線定義求出∠EBF=∠ADF,求出∠AEB=∠ADF即可.
證明:∵AD∥BC,
∴∠A+∠ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∵AB∥CD,
∴∠A+∠ADC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠ABC=∠ADC,
又∵BE平分∠ABC,
∴∠EBF=∠ABC(角平分線定義),
又∵DF平分∠ADC
∴∠ADF=∠ADC(角平分線定義),
∴∠EBF=∠ADF,
∵AD∥BC,
∴∠AEB=∠EBF(兩直線平行,內(nèi)錯(cuò)角相等),
∴∠AEB=∠ADF(等量代換),
∴BE∥DP(同位角相等,兩直線平行),
故答案為:∠ABC,∠ADC,∠ABC,∠ADC,∠EBF,∠ADF,∠EBF,∠ADF,∠EBF,∠AEB,∠ADF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、C分別在函數(shù)的圖像上,AB∥x軸,AC∥y軸,已知點(diǎn)A的坐標(biāo)為(2,m)(),延長OA交反比例函數(shù)的圖像交于點(diǎn)P,
(1)當(dāng)點(diǎn)P橫坐標(biāo)為3,求m的值;
(2)連接CO,當(dāng)AC=OA時(shí),求m的值;
(3)連接BP、CP,的值是否隨m的變化而變化?若變化,說明理由;若不變,求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知直線,被直線所截,,是平面內(nèi)任意一點(diǎn)(點(diǎn)不在直線,,上),設(shè),.下列各式:①;②;③;④;⑤,的度數(shù)可能是( )
A. ①②③④B. ①②④⑤
C. ①②③⑤D. ①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,等腰中,,是高上任一點(diǎn),是腰上任一點(diǎn),腰,,,那么線段的最小值是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,等腰中,,∥,CD∥,點(diǎn)沿著從向運(yùn)動(dòng),同時(shí)點(diǎn)沿著從向運(yùn)動(dòng),、兩點(diǎn)速度相同,當(dāng)到達(dá)時(shí),兩點(diǎn)停止運(yùn)動(dòng).
(1)圖中有__________對全等三角形.請你找一對說明理由,寫出過程.
(2)在、運(yùn)動(dòng)過程中,圖中陰影部分的面積是否發(fā)生變化?請說明理由.
(3)當(dāng)平分時(shí),延長交于,試說明.
(4)在(3)的條件下,若,請問此時(shí)點(diǎn)和點(diǎn)重合嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為打造書香校園,計(jì)劃購進(jìn)甲、乙兩種規(guī)格的書柜放置新購進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個(gè)、乙種書柜2個(gè),共需資金1020元;若購買甲種書柜4個(gè),乙種書柜3個(gè),共需資金1440元.
(1)甲、乙兩種書柜每個(gè)的價(jià)格分別是多少元?
(2)若該校計(jì)劃購進(jìn)這兩種規(guī)格的書柜共20個(gè),其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請?jiān)O(shè)計(jì)幾種購買方案供這個(gè)學(xué)校選擇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖像與一次函數(shù)的圖像的一個(gè)交點(diǎn)的橫坐標(biāo)是-3.
(1)求的值,并在指定坐標(biāo)系中畫出這兩個(gè)函數(shù)的圖像;
(2)根據(jù)圖像,直接寫出使一次函數(shù)值大于反比例函數(shù)值時(shí)x的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】說明:從(A),(B)兩題中任選一題做答.
春節(jié)前夕,便民超市把一批進(jìn)價(jià)為每件12元的商品,以每件定價(jià)20元銷售,每天能售出240件.銷售一段時(shí)間后發(fā)現(xiàn):如果每件漲價(jià)1元,那么每天就少售20件;如果每件降價(jià)1元,那么每天能多售出40件.
(A)在降價(jià)的情況下,要使該商品每天的銷售盈利為1800元,每件應(yīng)降價(jià)多少元?
(B)為了使該商品每天銷售盈利為1980元,每件定價(jià)多少元?
我選擇:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com