【題目】疫情初期,某市出臺(tái)《中小學(xué)教師志愿輔導(dǎo)工作實(shí)施意見(jiàn)》,鼓勵(lì)教師參與志愿輔導(dǎo),該市率先示范,推出名師公益課程,為學(xué)生提供線(xiàn)上免費(fèi)輔導(dǎo),據(jù)統(tǒng)計(jì),第一批公益課受益學(xué)生萬(wàn)人次,第三批公益課受益人數(shù)萬(wàn)人次.

1)如果第二批,第三批公益課受益學(xué)生人次的增長(zhǎng)率相同,求這個(gè)增長(zhǎng)率;

2)按照這個(gè)增長(zhǎng)率,預(yù)計(jì)第四批公益課受益學(xué)生將達(dá)到多少萬(wàn)人次?

【答案】1;(2

【解析】

1)設(shè)增長(zhǎng)率為,根據(jù)“第一批公益課受益學(xué)生3萬(wàn)人次,第三批公益課受益學(xué)生3.63萬(wàn)人次”可列方程求解;

2)第四批公益課受益學(xué)生=第三批公益課受益學(xué)生×(1+增長(zhǎng)率),計(jì)算即可求解.

解:(1)設(shè)增長(zhǎng)率為,根據(jù)題意,得

解得(舍去),

答:增長(zhǎng)率為

2(萬(wàn)人).

答:第四批公益課受益學(xué)生將達(dá)到3.993萬(wàn)人次.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,3,5,上一點(diǎn),連結(jié),將沿翻折,使點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上,則的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,上一點(diǎn),且,將沿過(guò)點(diǎn)的一條直線(xiàn)翻折,點(diǎn)恰好落在邊上的點(diǎn)處,折痕交于點(diǎn),則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對(duì)直角三角板如圖放置,點(diǎn)CFD的延長(zhǎng)線(xiàn)上,點(diǎn)BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長(zhǎng)度是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,弦點(diǎn)是直徑上方半圓上的動(dòng)點(diǎn)(包括端點(diǎn)的平分線(xiàn)相交于點(diǎn)E,當(dāng)點(diǎn)從點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),則兩點(diǎn)的運(yùn)動(dòng)路徑長(zhǎng)的比值是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,內(nèi)自由移動(dòng),若的半徑為且圓心O內(nèi)所能到達(dá)的區(qū)域的面積為的周長(zhǎng)為_______________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn)

1)求拋物線(xiàn)的函數(shù)關(guān)系式;

2)點(diǎn)是拋物線(xiàn)第象限上一點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,連接,如果點(diǎn)關(guān)于直線(xiàn)的對(duì)稱(chēng)點(diǎn)落在軸下方(),求的取值范圍;

3)如圖2,連接繞平面內(nèi)某點(diǎn)順時(shí)針旋轉(zhuǎn),得到點(diǎn)的對(duì)應(yīng)點(diǎn)分別是點(diǎn)、若的兩個(gè)項(xiàng)點(diǎn)恰好落在拋物線(xiàn)上,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,上一點(diǎn),點(diǎn)是半徑上一動(dòng)點(diǎn)(不與,重合),過(guò)點(diǎn)作射線(xiàn),分別交弦,兩點(diǎn),在射線(xiàn)上取點(diǎn),使

1)求證:的切線(xiàn).

2)當(dāng)的中點(diǎn)時(shí);

①若,求證:以,,為頂點(diǎn)的四邊形是菱形;

②若,且,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)k≠8)的圖像經(jīng)過(guò)點(diǎn)A1,6).

1)求k的值;

2)如圖,過(guò)點(diǎn)A作直線(xiàn)AC與函數(shù)的圖像交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求直線(xiàn)AC的解析式;

3)在(2)的條件下,連接OA,過(guò)y軸的正半軸上的一點(diǎn)D作直線(xiàn)DEx軸,分別交線(xiàn)段ACOA于點(diǎn)E、F,若AEF的面積為,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案