【題目】如圖,為測(cè)量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測(cè)得坡長(zhǎng)AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF結(jié)果精確到米)

【答案】
(1)

解:作BH⊥AF于H,如圖,

在Rt△ABF中,∵sin∠BAH= ,

∴BH=800sin30°=400,

∴EF=BH=400m


(2)

解:在Rt△CBE中,∵sin∠CBE=

∴CE=200sin45°=100 141.4,

∴CF=CE+EF=141.4+400≈541(m).

答:AB段山坡高度為400米,山CF的高度約為541米


【解析】(1)作BH⊥AF于H,如圖,在Rt△ABF中根據(jù)正弦的定義可計(jì)算出BH的長(zhǎng),從而得到EF的長(zhǎng);(2)先在Rt△CBE中利用∠CBE的正弦計(jì)算出CE,然后計(jì)算CE和EF的和即可.本題考查了解直角三角形的應(yīng)用﹣坡度與坡角問(wèn)題:坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個(gè)比值,反映了斜坡的陡峭程度,一般用i表示,常寫(xiě)成i=1:m的形式.把坡面與水平面的夾角α叫做坡角,坡度i與坡角α之間的關(guān)系為:i═tanα.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+2x﹣3與x軸交于A、B兩點(diǎn),且B(1,0)
(1)求拋物線的解析式和點(diǎn)A的坐標(biāo);
(2)如圖1,點(diǎn)P是直線y=x上的動(dòng)點(diǎn),當(dāng)直線y=x平分∠APB時(shí),求點(diǎn)P的坐標(biāo);
(3)如圖2,已知直線y= x﹣ 分別與x軸、y軸交于C、F兩點(diǎn),點(diǎn)Q是直線CF下方的拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作y軸的平行線,交直線CF于點(diǎn)D,點(diǎn)E在線段CD的延長(zhǎng)線上,連接QE.問(wèn):以QD為腰的等腰△QDE的面積是否存在最大值?若存在,請(qǐng)求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)觀察推理如圖①,在△ABC中,∠ACB=90°,AC=BC,直線l過(guò)點(diǎn)C,點(diǎn)A、B在直線l的同側(cè),,垂足分別為.求證AEC≌△CDB.

(2)類(lèi)比探究如圖②,在RtABC中,∠ACB=90°,AC=4,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°AB,連接CB,求△ACB,的面積.

(3)拓展提升:如圖③,在△EBC中,∠E=ECB=60°,EC=BC=3,點(diǎn)OBC上,且OC=2,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),連接OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn) F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間t.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,向一個(gè)半徑為R、容積為V的球形容器內(nèi)注水,則能夠反映容器內(nèi)水的體積y與容器內(nèi)水深x間的函數(shù)關(guān)系的圖象可能是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(﹣1)2016+2sin60°﹣|﹣ |+π0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位,再向右平移1個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.

(1)求點(diǎn)C,D的坐標(biāo)及平行四邊形ABDC的面積.

(2)在y軸上是否存在一點(diǎn)P,連接PA,PB,使=2,若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說(shuō)明理由.

(3)點(diǎn)P是四邊形ABCD邊上的點(diǎn),若△OPC為等腰三角形時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下列數(shù)組作為三角形的三條邊長(zhǎng),其中能構(gòu)成直角三角形的是( )

A. 1, 3 B. , ,5 C. 1.5,22.5 D. ,

【答案】C

【解析】A、12+2≠32,不能構(gòu)成直角三角形,故選項(xiàng)錯(cuò)誤;

B(2+2≠52,不能構(gòu)成直角三角形,故選項(xiàng)錯(cuò)誤;

C、1.52+22=2.52,能構(gòu)成直角三角形,故選項(xiàng)正確;

D、(2+22,不能構(gòu)成直角三角形,故選項(xiàng)錯(cuò)誤.

故選:C

型】單選題
結(jié)束】
3

【題目】在RtABC中,C=90°,AC=9,BC=12,則點(diǎn)C到斜邊AB的距離是( )

ABC9D6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,G是BD上一點(diǎn),連接CG并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F,交AD于點(diǎn)E.

(1)求證:AG=CG.
(2)求證:AG2=GEGF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD 中,AB=AD,點(diǎn)B關(guān)于AC的對(duì)稱點(diǎn)B恰好落在CD上,若∠BAD=,則ACB的度數(shù)為( 。

A. α B. 90°-α C. 45° D. α-45°

查看答案和解析>>

同步練習(xí)冊(cè)答案