【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點(diǎn)測(cè)到B點(diǎn)的仰角α為60°,從C點(diǎn)測(cè)得B點(diǎn)的仰角β為30°,甲建筑物的高AB=30米
(1)求甲、乙兩建筑物之間的距離AD.
(2)求乙建筑物的高CD.
【答案】
(1)
解:作CE⊥AB于點(diǎn)E,
在Rt△ABD中,AD= = =10 (米);
(2)
解:在Rt△BCE中,CE=AD=10 米,
BE=CEtanβ=10 × =10(米),
則CD=AE=AB﹣BE=30﹣10=20(米)
答:乙建筑物的高度DC為20m.
【解析】(1)在Rt△ABD中利用三角函數(shù)即可求解;(2)作CE⊥AB于點(diǎn)E,在Rt△BCE中利用三角函數(shù)求得BE的長(zhǎng),然后根據(jù)CD=AE=AB﹣BE求解.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解關(guān)于仰角俯角問題的相關(guān)知識(shí),掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.連接BD,把△ABD繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到△EBF,若點(diǎn)F剛好落在DA的延長(zhǎng)線上,則∠C=°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市校計(jì)劃購買甲、乙兩種樹苗共200株來綠化校園,甲種樹苗每株25元,乙種樹苗每株30元,通過調(diào)查了解,甲乙兩種樹苗成活率分別是90%和95%.
(1)若購買這種樹苗共用去5600元,則甲、乙兩種樹苗各購買了多少株?
(2)如果要求這200株樹苗的成活率不低于93%,那么乙種樹苗至少要購買多少株.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖1,圖2所提供的信息,解答下列問題:
(1)2007年海南省城鎮(zhèn)居民人均可支配收入為 元,比2006年增長(zhǎng) %;
(2)求2008年海南省城鎮(zhèn)居民人均可支配收入(精確到1元),并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)圖1指出:2005﹣2008年海南省城鎮(zhèn)居民人均可支配收入逐年 (填“增加”或“減少”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的y與x的部分對(duì)應(yīng)值如下表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列結(jié)論:①拋物線的開口向下;②其圖象的對(duì)稱軸為x=1;③當(dāng)x<1時(shí),函數(shù)值y隨x的增大而增大;④方程ax2+bx+c=0有一個(gè)根大于4,其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AC=AD,AC平分∠BAD,點(diǎn)P是AC延長(zhǎng)線上一點(diǎn),且PD⊥AD.
(1)證明:∠BDC=∠PDC;
(2)若AC與BD相交于點(diǎn)E,AB=1,CE:CP=2:3,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點(diǎn)E在BC的延長(zhǎng)線上,若∠BOD=120°,則∠DCE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組借助無人飛機(jī)航拍校園.如圖,無人飛機(jī)從A處水平飛行至B處需8秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.已知無人飛機(jī)的飛行速度為4米/秒,求這架無人飛機(jī)的飛行高度.(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com