精英家教網 > 初中數學 > 題目詳情
已知:如圖①,在平行四邊形ABCD中,AB=12,BC=6,AD⊥BD.以AD為斜邊在平行四邊形ABCD的內部作Rt△AED,∠EAD=30°,∠AED=90°.

(1)求△AED的周長;
(2)若△AED以每秒2個單位長度的速度沿DC向右平行移動,得到△A0E0D0,當A0D0與BC重合時停止移動,設運動時間為t秒,△A0E0D0與△BDC重疊的面積為S,請直接寫出S與t之間的函數關系式,并寫出t的取值范圍;
(3)如圖②,在(2)中,當△AED停止移動后得到△BEC,將△BEC繞點C按順時針方向旋轉α(0°<α<180°),在旋轉過程中,B的對應點為B1,E的對應點為E1,設直線B1E1與直線BE交于點P、與直線CB交于點Q.是否存在這樣的α,使△BPQ為等腰三角形?若存在,求出α的度數;若不存在,請說明理由.
(1)9+3  (2)S與t之間的函數關系式為:
S=
(3)存在,α=75°

解:(1)∵四邊形ABCD是平行四邊形,
∴AD=BC=6.
在Rt△ADE中,AD=6,∠EAD=30°,
∴AE=AD•cos30°=3,DE=AD•sin30°=3,
∴△AED的周長為:6+3+3=9+3
(2)在△AED向右平移的過程中:
(I)當0≤t≤1.5時,如答圖1所示,此時重疊部分為△D0NK.

∵DD0=2t,∴ND0=DD0•sin30°=t,NK=ND0•tan30°=t,
∴S=SD0NK=ND0•NK=t•t=t2;
(II)當1.5<t≤4.5時,如答圖2所示,此時重疊部分為四邊形D0E0KN.

∵AA0=2t,∴A0B=AB-AA0=12-2t,
∴A0N=A0B=6-t,NK=A0N•tan30°=(6-t).
∴S=S四邊形D0E0KN=SADE-SA0NK=×3×3-×(6-t)×(6-t)=-t2+2t-;
(III)當4.5<t≤6時,如答圖3所示,此時重疊部分為五邊形D0IJKN.

∵AA0=2t,∴A0B=AB-AA0=12-2t=D0C,
∴A0N=A0B=6-t,D0N=6-(6-t)=t,BN=A0B•cos30°=(6-t);
易知CI=BJ=A0B=D0C=12-2t,∴BI=BC-CI=2t-6,
S=S梯形BND0I-SBKJ= [t+(2t-6)]• (6-t)-•(12-2t)•(12-2t)=-t2+20t-42
綜上所述,S與t之間的函數關系式為:
S=
(3)存在α,使△BPQ為等腰三角形.
理由如下:經探究,得△BPQ∽△B1QC,
故當△BPQ為等腰三角形時,△B1QC也為等腰三角形.
(I)當QB=QP時(如答圖4),

則QB1=QC,∴∠B1CQ=∠B1=30°,
即∠BCB1=30°,
∴α=30°;
(II)當BQ=BP時,則B1Q=B1C,
若點Q在線段B1E1的延長線上時(如答圖5),

∵∠B1=30°,∴∠B1CQ=∠B1QC=75°,
即∠BCB1=75°,
∴α=75°.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,點是半圓的半徑上的動點,作.點是半圓上位于左側的點,連結交線段,且

(1) 求證:是⊙O的切線.
(2) 若⊙O的半徑為,,設
①求關于的函數關系式.
②當時,求的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

二次函數的圖象的頂點坐標是(   )
A.(1,3)B.(1,3)C.(1,3)D.(1,3)

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某職業(yè)學校三名學生到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為8元/千克,下面是他們在活動結束后的對話。
A:如果以10元/千克的價格銷售,那么每天可售出300千克.
B:如果以13元/千克的價格銷售,那么每天可獲取利潤750元.
C:通過調查驗證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數關系.
(1)求y(千克)與x(元)(x>0)的函數關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲取的利潤達到600元?【利潤=銷售量×(銷售單價-進價)】
(3)一段時間后,發(fā)現(xiàn)這種水果每天的銷售量均不低于225千克.則此時該超市銷售這種水果每天獲取的最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知直線y=x+6交x軸于點A,交y軸于點C,經過A和原點O的拋物線y=ax2+bx(a<0)的頂點B在直線AC上.

(1)求拋物線的函數關系式;
(2)以B點為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關系,并說明理由;
(3)若E為⊙B優(yōu)弧上一動點,連結AE、OE,問在拋物線上是否存在一點M,使∠MOA︰∠AEO=2︰3,若存在,試求出點M的坐標;若不存在,試說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

一件工藝品進價為100元,標價135元售出,每天可售出100件.根據銷售統(tǒng)計,一件工藝品每降價1元出售,則每天可多售出4件,要使每天獲得的利潤最大,每件需降價的錢數為(  )
A.5元B.10元
C.0元D.3 600元

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知二次函數的圖象如圖,其對稱軸x=-1,給出下列結果
>4ac,②abc>0,③2a+b=0,④a+b+c>0,⑤a-b+c<0,則正確的結論是(   )
A.①②③④B.②④⑤C.②③④D.①④⑤

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,有一個拋物線形拱橋,其橋拱的最大高度為16米,跨度為40米,現(xiàn)把它的示意圖放在平面直角坐標系中,則此拋物線的函數關系式為___________________.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

拋物線y=3x2,y=-3x2,y=x2+3共有的性質是
A.開口向上B.對稱軸是y軸
C.都有最高點D.y隨x值的增大而增大

查看答案和解析>>

同步練習冊答案