如圖,△ABC中,∠C=90゜,AB的垂直平分線交BC于D,交AB于E,∠DAC=20゜,∠B=________.

35゜
分析:由AB的垂直平分線交BC于D,交AB于E,根據(jù)線段垂直平分線的性質(zhì),可得AD=BD,由等腰三角形的性質(zhì),可得∠B=∠BAD,繼而可得∠ADC=2∠B,則可求得答案.
解答:∵AB的垂直平分線交BC于D,交AB于E,
∴AD=BD,
∴∠B=∠BAD,
∴∠ADC=∠B+∠BAD=2∠B,
∵∠DAC=20゜,∠C=90゜,
∴2∠B=∠ADC=90°-20°=70°,
即∠B=35°.
故答案為:35°.
點評:此題考查了線段垂直平分線的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握數(shù)形結(jié)合思想與轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案