【題目】如圖,已知在△ABC中,∠B與∠C的平分線交于點P.
(1)當∠A=112°時,求∠BPC的度數;
(2)當∠A=α時,求∠BPC的度數.
【答案】
(1)解:∵△ABC中,∠A=112°,
∴∠ABC+∠ACB=180°﹣∠A=180°﹣112°=68°,
∴BP,CP分別為∠ABC與∠ACP的平分線,
∴∠2+∠4= (∠ABC+∠ACB)= ×68°=34°,
∴∠P=180°﹣(∠2+∠4)=180°﹣34°=146°
(2)解:如圖,連接AP并延長至D,
∵∠ABC與∠ACB的角平分線相交于P,
∴∠1= ABC,∠3= ∠ACB,
∵∠BPD是△ABD的外角,
∴∠BPD=∠1+∠BAP,
同理可得∠CPD=∠3+∠CAP,
∴∠BPC=∠BPD+∠CPD=∠1+∠BAP+∠3+∠CAP= ABC+ ∠ACB+∠BAC= (∠ABC+∠ACB)+α= (180°﹣α)+α=90°+ α.
【解析】(1)先根據三角形內角和定理,求出∠ABC+∠ACB的度數,再由角平分線的定義得出∠2+∠4的度數,最后由三角形內角和定理,即可求出∠BPC的度數;(2)先連接AP并延長至D,根據∠ABC與∠ACB的角平分線相交于P,求得∠1= ABC,∠3= ∠ACB,最后根據三角形的外角性質,求得∠BPC的度數.
【考點精析】本題主要考查了三角形的內角和外角和三角形的外角的相關知識點,需要掌握三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角;三角形一邊與另一邊的延長線組成的角,叫三角形的外角;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角才能正確解答此題.
科目:初中數學 來源: 題型:
【題目】如圖1,點A坐標為(2,0),以OA為邊在第一象限內作等邊△OAB,點C為x軸上一動點,且在點A右側,連接BC,以BC為邊在第一象限內作等邊△BCD,連接AD交BC于E.
(1)①直接回答:△OBC與△ABD全等嗎?
②試說明:無論點C如何移動,AD始終與OB平行;
(2)當點C運動到使AC2=AEAD時,如圖2,經過O、B、C三點的拋物線為y1.試問:y1上是否存在動點P,使△BEP為直角三角形且BE為直角邊?若存在,求出點P坐標;若不存在,說明理由;
(3)在(2)的條件下,將y1沿x軸翻折得y2,設y1與y2組成的圖形為M,函數的圖象l與M有公共點.試寫出:l與M的公共點為3個時,m的取值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,△ABO中,A,B兩點的坐標分別為(2,4),(7,2),C,G,F,E分別為過A,B兩點所作的y軸、x軸的垂線與y軸、x軸的交點.求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司從2014年開始投入技術改進資金,經技術改進后,其產品的成本不斷降低,具體數據如下表:
(1)請你認真分析表中數據,從一次函數和反比例函數中確定哪一個函數能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬元.
①預計生產成本每件比2016年降低多少萬元?
②若打算在2017年把每件產品成本降低到3.2萬元,則還需要投入技改資金多少萬元?(結果精確到0.01萬元).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com