設(x+y)=a,(x-y)=b,用含a,b的式子表示:(1)(xy)2;(2)x2+y2

答案:
解析:

  (1)

  (2)


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+)2,善于思考的小明進行了以下探索:

ab=(mn)2(其中ab、mn均為整數(shù)),則有abm2+2n2+2mn.

am2+2n2,b=2mn.這樣小明就找到了一種把部分ab的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當a、bm、n均為正整數(shù)時,若ab=(mn)2,用含m、n的式子分別表示ab,得a=________,b=________;

(2)利用所探索的結(jié)論,找一組正整數(shù)a、bm、n,填空:________+________=(______+______)2;

(3)若a+4=(mn)2,且a、mn均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省無棣縣十校九年級上學期期中聯(lián)考數(shù)學卷 題型:解答題

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年山東省無棣縣十校九年級上學期期中聯(lián)考數(shù)學卷 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆山東省無棣縣十校聯(lián)考九年級上學期期中數(shù)學試卷 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0  

 

查看答案和解析>>

同步練習冊答案