如圖,拋物線=-+5+經(jīng)過點(diǎn)C(4,0),與軸交于另一點(diǎn)A,與軸交于點(diǎn)B.
(1)求點(diǎn)A、B的坐標(biāo);
(2)P是軸上一點(diǎn),△PAB是等腰三角形,試求P點(diǎn)坐標(biāo);
(3)若·Q的半徑為1,圓心Q在拋物線上運(yùn)動,當(dāng)·Q與軸相切時(shí),求·Q上的點(diǎn)到點(diǎn)B的最短距離.
(1)A(1,0),B(0,-4);(2)P1(0,4),P2(0,-),P3(0,-4-);
(3)-1
【解析】
試題分析:(1)將C代入=-+5+即可求得拋物線的解折式,再把=0與=0代入求得的拋物線的解折式即可求得結(jié)果;
(2)先根據(jù)題意作出圖形,再根據(jù)等腰三角形的性質(zhì)結(jié)合勾股定理求解即可;
(3)由題意當(dāng)Q的橫坐標(biāo)為1或-1時(shí)成立,再代入拋物線解析式即可求得點(diǎn)Q的坐標(biāo),連Q1B(即AB),交⊙Q1于M. 連Q2B,交⊙Q2于N,MB和NB即為所求.
(1)將C代入拋物線的解折式得:0=-42+5×4+,=-4,所以=-2+5-4
令=0,則-2+5-4=0,解得1=4, 2=1,所以A(1,0)
令=0,則=-02+5×0-4=-4,所以B(0,-4);
(2)如圖,P點(diǎn)有三個(gè).
P1(0,4)
令∣P2B∣=. 則∣0P2∣=4-
∣P2A∣2=∣0P2∣2+∣0A∣2=(4-)2+12=2,解得=
P2(0,-)
∣BP3∣=AB=+=
P3(0,-4-);
(3)當(dāng)Q的橫坐標(biāo)為1或-1時(shí)成立
=-12+5×1-4=0. Q1(1,0)
=-(-1)2+5×(-1)-4=-10,Q2(-1,-10)
連Q1B(即AB),交⊙Q1于M. 連Q2B,交⊙Q2于N,MB和NB即為所求
MB=Q1B-Q1M=AB-QM=-1
NB=Q2B-Q2N=-1=-1.
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆四川省青神縣初級中學(xué)校九年級診斷性檢測數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,拋物線=-+5+經(jīng)過點(diǎn)C(4,0),與軸交于另一點(diǎn)A,與軸交于點(diǎn)B.
(1)求點(diǎn)A、B的坐標(biāo);
(2)P是軸上一點(diǎn),△PAB是等腰三角形,試求P點(diǎn)坐標(biāo);
(3)若·Q的半徑為1,圓心Q在拋物線上運(yùn)動,當(dāng)·Q與軸相切時(shí),求·Q上的點(diǎn)到點(diǎn)B的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,拋物線y=x2-x與x軸交于O,A兩點(diǎn). 半徑為1的動圓(⊙P),圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動;半徑為2的動圓(⊙Q),圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動. 兩圓同時(shí)出發(fā),且移動速度相等,當(dāng)運(yùn)動到P,Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動. 設(shè)點(diǎn)P的橫坐標(biāo)為t .
(1)點(diǎn)Q的橫坐標(biāo)是 (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省無錫市九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,拋物線y=x2-x-12與x軸交于A、C兩點(diǎn),與y軸交于B點(diǎn).
(1)求△AOB的外接圓的面積;
(2)若動點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位沿射線AC方向運(yùn)動;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位沿射線BA方向運(yùn)動,當(dāng)點(diǎn)P到達(dá)點(diǎn)C處時(shí),兩點(diǎn)同時(shí)停止運(yùn)動。問當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△OAB相似?
(3)若M為線段AB上一個(gè)動點(diǎn),過點(diǎn)M作MN平行于y軸交拋物線于點(diǎn)N.
①是否存在這樣的點(diǎn)M,使得四邊形OMNB恰為平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
②當(dāng)點(diǎn)M運(yùn)動到何處時(shí),四邊形CBNA的面積最大?求出此時(shí)點(diǎn)M的坐標(biāo)及四邊形CBAN面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com